論文の概要: Zero-Shot Subject-Centric Generation for Creative Application Using Entropy Fusion
- arxiv url: http://arxiv.org/abs/2503.10697v1
- Date: Wed, 12 Mar 2025 06:27:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-17 13:08:28.732477
- Title: Zero-Shot Subject-Centric Generation for Creative Application Using Entropy Fusion
- Title(参考訳): エントロピー融合によるゼロショット主題中心生成の創造的応用
- Authors: Kaifeng Zou, Xiaoyi Feng, Peng Wang, Tao Huang, Zizhou Huang, Zhang Haihang, Yuntao Zou, Dagang Li,
- Abstract要約: 本稿では,事前訓練されたテキスト・画像・モデルFLUXの各サンプリングステップから得られた情報的横断的特徴をマージするエントロピーに基づく特徴強調融合法を提案する。
また,Large Language Models (LLMs) に基づくエージェントフレームワークを開発し,ユーザのカジュアルな入力をより記述的なプロンプトに変換することにより,高精細な画像生成を実現する。
- 参考スコア(独自算出の注目度): 8.112178711210158
- License:
- Abstract: Generative models are widely used in visual content creation. However, current text-to-image models often face challenges in practical applications-such as textile pattern design and meme generation-due to the presence of unwanted elements that are difficult to separate with existing methods. Meanwhile, subject-reference generation has emerged as a key research trend, highlighting the need for techniques that can produce clean, high-quality subject images while effectively removing extraneous components. To address this challenge, we introduce a framework for reliable subject-centric image generation. In this work, we propose an entropy-based feature-weighted fusion method to merge the informative cross-attention features obtained from each sampling step of the pretrained text-to-image model FLUX, enabling a precise mask prediction and subject-centric generation. Additionally, we have developed an agent framework based on Large Language Models (LLMs) that translates users' casual inputs into more descriptive prompts, leading to highly detailed image generation. Simultaneously, the agents extract primary elements of prompts to guide the entropy-based feature fusion, ensuring focused primary element generation without extraneous components. Experimental results and user studies demonstrate our methods generates high-quality subject-centric images, outperform existing methods or other possible pipelines, highlighting the effectiveness of our approach.
- Abstract(参考訳): 生成モデルは視覚コンテンツ作成に広く利用されている。
しかし、現行のテキスト・ツー・イメージモデルは、既存の手法と区別が難しい不要な要素が存在するため、織物パターン設計やミーム生成といった実用上の課題に直面していることが多い。
一方、主観的参照生成は重要な研究トレンドとして現れており、外部成分を効果的に除去しつつ、クリーンで高品質な主観的イメージを生成できる技術の必要性を強調している。
この課題に対処するために、信頼性の高い主観中心の画像生成のためのフレームワークを導入する。
本研究では,事前訓練されたテキスト・ツー・イメージ・モデルFLUXの各サンプリングステップから得られた情報的横断的特徴をマージし,マスクの正確な予測と主観的生成を可能にするエントロピー型特徴強調融合法を提案する。
さらに,Large Language Models (LLMs) に基づくエージェントフレームワークを開発し,ユーザのカジュアルな入力をより記述的なプロンプトに変換することにより,高精細な画像生成を実現する。
同時に、エージェントはプロンプトの一次要素を抽出し、エントロピーに基づく特徴融合を誘導し、外部成分を含まない集中一次要素生成を確実にする。
実験結果とユーザスタディにより,提案手法は高品質な主観中心画像を生成し,既存の手法や可能なパイプラインを上回り,アプローチの有効性を強調した。
関連論文リスト
- MFCLIP: Multi-modal Fine-grained CLIP for Generalizable Diffusion Face Forgery Detection [64.29452783056253]
フォトリアリスティック・フェイスジェネレーション手法の急速な発展は、社会やアカデミックにおいて大きな関心を集めている。
既存のアプローチは主に画像モダリティを用いて顔の偽造パターンをキャプチャするが、きめ細かいノイズやテキストのような他のモダリティは完全には探索されていない。
そこで本研究では,画像ノイズの多点にわたる包括的かつきめ細かなフォージェリートレースをマイニングする,MFCLIP(MF-modal Fine-fine-fine-fine-fine-fine CLIP)モデルを提案する。
論文 参考訳(メタデータ) (2024-09-15T13:08:59Z) - ZePo: Zero-Shot Portrait Stylization with Faster Sampling [61.14140480095604]
本稿では,4つのサンプリングステップでコンテンツとスタイルの融合を実現する拡散モデルに基づく,インバージョンフリーなポートレートスタイリングフレームワークを提案する。
本稿では,一貫性機能における冗長な特徴をマージする機能統合戦略を提案し,注意制御の計算負荷を低減させる。
論文 参考訳(メタデータ) (2024-08-10T08:53:41Z) - Prompt-Consistency Image Generation (PCIG): A Unified Framework Integrating LLMs, Knowledge Graphs, and Controllable Diffusion Models [20.19571676239579]
生成した画像と対応する記述とのアライメントを強化するための,拡散に基づく新しいフレームワークを提案する。
この枠組みは不整合現象の包括的解析に基づいて構築され,画像の表示に基づいて分類する。
次に、最先端の制御可能な画像生成モデルとビジュアルテキスト生成モジュールを統合し、元のプロンプトと整合した画像を生成する。
論文 参考訳(メタデータ) (2024-06-24T06:12:16Z) - Text-to-Image Diffusion Models are Great Sketch-Photo Matchmakers [120.49126407479717]
本稿では,ゼロショットスケッチに基づく画像検索(ZS-SBIR)のためのテキスト・画像拡散モデルについて検討する。
スケッチと写真の間のギャップをシームレスに埋めるテキストと画像の拡散モデルの能力。
論文 参考訳(メタデータ) (2024-03-12T00:02:03Z) - DreamDrone: Text-to-Image Diffusion Models are Zero-shot Perpetual View Generators [56.994967294931286]
テキストプロンプトからフライスルーシーンを生成する新しいゼロショット・トレーニングフリーパイプラインであるDreamDroneを紹介する。
我々は、高品質な画像生成と非有界な一般化能力のために、事前訓練されたテキスト・画像拡散モデルの中間潜時符号を明示的に修正することを提唱する。
論文 参考訳(メタデータ) (2023-12-14T08:42:26Z) - FaceStudio: Put Your Face Everywhere in Seconds [23.381791316305332]
アイデンティティを保存する画像合成は、パーソナライズされたスタイリスティックなタッチを加えながら、被験者のアイデンティティを維持することを目指している。
Textual InversionやDreamBoothといった従来の手法は、カスタムイメージ作成に力を入れている。
本研究は,人間の画像に焦点をあてたアイデンティティ保存合成への新たなアプローチを提案する。
論文 参考訳(メタデータ) (2023-12-05T11:02:45Z) - Taming Encoder for Zero Fine-tuning Image Customization with
Text-to-Image Diffusion Models [55.04969603431266]
本稿では,ユーザが指定したカスタマイズされたオブジェクトの画像を生成する手法を提案する。
この手法は、従来のアプローチで要求される長大な最適化をバイパスする一般的なフレームワークに基づいている。
提案手法は, 出力品質, 外観の多様性, 被写体忠実度を考慮した画像合成が可能であることを示す。
論文 参考訳(メタデータ) (2023-04-05T17:59:32Z) - Zero-shot Generation of Coherent Storybook from Plain Text Story using
Diffusion Models [43.32978092618245]
本稿では,ストーリーの平文からコヒーレントなストーリーブックを生成するためのニューラルパイプラインを提案する。
我々は,事前学習された大規模言語モデルとテキスト誘導型潜在拡散モデルを組み合わせて,コヒーレントな画像を生成する。
論文 参考訳(メタデータ) (2023-02-08T06:24:06Z) - DreamArtist++: Controllable One-Shot Text-to-Image Generation via Positive-Negative Adapter [63.622879199281705]
いくつかの例に基づく画像生成手法が提案されており、例えば、いくつかの入力参照の健全な特徴を吸収して新しい概念を生成する。
本研究では,DreamArtistというシンプルなフレームワークを提案する。このフレームワークは,事前学習した拡散モデルに対して,新しい正負の学習戦略を採用する。
我々は,画像類似性(忠実度)と多様性,生成制御性,スタイルのクローニングから,幅広い実験を行い,提案手法の評価を行った。
論文 参考訳(メタデータ) (2022-11-21T10:37:56Z) - Generating Annotated High-Fidelity Images Containing Multiple Coherent
Objects [10.783993190686132]
コンテキスト情報を明示的に必要とせずに、複数のオブジェクトで画像を合成できるマルチオブジェクト生成フレームワークを提案する。
我々は,Multi-MNISTおよびCLEVRデータセットを用いた実験により,コヒーレンシーと忠実さの保存方法を示す。
論文 参考訳(メタデータ) (2020-06-22T11:33:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。