論文の概要: Sparse Dictionary Learning for Image Recovery by Iterative Shrinkage
- arxiv url: http://arxiv.org/abs/2503.10732v1
- Date: Thu, 13 Mar 2025 13:45:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-17 13:07:43.059952
- Title: Sparse Dictionary Learning for Image Recovery by Iterative Shrinkage
- Title(参考訳): 反復収縮による画像復元のためのスパース辞書学習
- Authors: Shima Shabani, Mohammadsadegh Khoshghiaferezaee, Michael Breuß,
- Abstract要約: 画像回復のためのスパース辞書学習におけるスパース符号化問題について検討する。
縮小操作を用いて構築したいくつかの最先端スパース最適化手法について検討・比較する。
- 参考スコア(独自算出の注目度): 0.1433758865948252
- License:
- Abstract: In this paper we study the sparse coding problem in the context of sparse dictionary learning for image recovery. To this end, we consider and compare several state-of-the-art sparse optimization methods constructed using the shrinkage operation. As the mathematical setting of these methods, we consider an online approach as algorithmical basis together with the basis pursuit denoising problem that arises by the convex optimization approach to the dictionary learning problem. By a dedicated construction of datasets and corresponding dictionaries, we study the effect of enlarging the underlying learning database on reconstruction quality making use of several error measures. Our study illuminates that the choice of the optimization method may be practically important in the context of availability of training data. In the context of different settings for training data as may be considered part of our study, we illuminate the computational efficiency of the assessed optimization methods.
- Abstract(参考訳): 本稿では,画像回復のためのスパース辞書学習におけるスパース符号化問題について検討する。
そこで本研究では,収縮操作を用いて構築したいくつかの最先端スパース最適化手法について検討・比較する。
これらの手法の数学的設定として,オンライン手法を,辞書学習問題に対する凸最適化手法によって生じる基礎探索問題とともに,アルゴリズム的基礎とみなす。
データセットとそれに対応する辞書を専用に構築することにより,学習データベースの強化が,いくつかの誤り対策を生かした再構築品質に及ぼす影響について検討する。
本研究は, トレーニングデータの可用性において, 最適化手法の選択が事実上重要であることを示唆するものである。
本研究の一環として, 評価した最適化手法の計算効率について検討した。
関連論文リスト
- Equation discovery framework EPDE: Towards a better equation discovery [50.79602839359522]
進化的最適化に基づく発見フレームワークであるEPDEアルゴリズムを強化する。
提案手法は基本関数や個人差分といった基本構造ブロックを用いて用語を生成する。
我々は,提案アルゴリズムの耐雑音性および全体的な性能を,最先端の方程式探索フレームワークであるSINDyの結果と比較することによって検証する。
論文 参考訳(メタデータ) (2024-12-28T15:58:44Z) - Conditional and Residual Methods in Scalable Coding for Humans and
Machines [26.32381277880991]
本研究では,人間と機械のスケーラブルコーディングの文脈において,条件付きおよび残留符号化の手法を提案する。
我々は,コンピュータビジョンタスクで利用可能な情報を用いて,再建作業の速度歪み性能を最適化することに注力する。
論文 参考訳(メタデータ) (2023-05-04T05:32:44Z) - Learning Large-scale Neural Fields via Context Pruned Meta-Learning [60.93679437452872]
本稿では,大規模ニューラルネットワーク学習のための最適化に基づくメタラーニング手法を提案する。
メタテスト時間における勾配再スケーリングは、非常に高品質なニューラルネットワークの学習を可能にすることを示す。
我々のフレームワークは、モデルに依存しない、直感的で、実装が容易であり、幅広い信号に対する大幅な再構成改善を示す。
論文 参考訳(メタデータ) (2023-02-01T17:32:16Z) - An Efficient Approximate Method for Online Convolutional Dictionary
Learning [32.90534837348151]
トレーニングサンプルのスパース分解を取り入れた新しい近似OCDL法を提案する。
提案手法は,最先端のOCDLアルゴリズムの有効性を保ちながら,計算コストを大幅に削減する。
論文 参考訳(メタデータ) (2023-01-25T13:40:18Z) - Batch Active Learning from the Perspective of Sparse Approximation [12.51958241746014]
アクティブな学習は、機械学習エージェントと人間のアノテーションとのインタラクションを活用することで、効率的なモデルトレーニングを可能にする。
スパース近似の観点からバッチアクティブラーニングを定式化する新しいフレームワークを提案し,提案する。
我々のアクティブラーニング手法は、ラベルのないデータプールから、対応するトレーニング損失関数が、そのフルデータプールに近似するように、情報的サブセットを見つけることを目的としている。
論文 参考訳(メタデータ) (2022-11-01T03:20:28Z) - Object Representations as Fixed Points: Training Iterative Refinement
Algorithms with Implicit Differentiation [88.14365009076907]
反復的洗練は表現学習に有用なパラダイムである。
トレーニングの安定性とトラクタビリティを向上させる暗黙の差別化アプローチを開発する。
論文 参考訳(メタデータ) (2022-07-02T10:00:35Z) - Deep Equilibrium Assisted Block Sparse Coding of Inter-dependent
Signals: Application to Hyperspectral Imaging [71.57324258813675]
相互依存信号のデータセットは、列が強い依存を示す行列として定義される。
ニューラルネットワークは、事前に構造として機能し、基礎となる信号相互依存性を明らかにするために使用される。
ディープ・アンローリングとディープ・平衡に基づくアルゴリズムが開発され、高度に解釈可能で簡潔なディープ・ラーニング・ベース・アーキテクチャを形成する。
論文 参考訳(メタデータ) (2022-03-29T21:00:39Z) - Unsupervised feature selection via self-paced learning and low-redundant
regularization [6.083524716031565]
自己評価学習とサブスペース学習の枠組みを統合することにより,教師なしの特徴選択を提案する。
この手法の収束性は理論的および実験的に証明される。
実験の結果,提案手法はクラスタリング法の性能を向上し,他の比較アルゴリズムよりも優れていることがわかった。
論文 参考訳(メタデータ) (2021-12-14T08:28:19Z) - A Field Guide to Federated Optimization [161.3779046812383]
フェデレートされた学習と分析は、分散化されたデータからモデル(あるいは統計)を協調的に学習するための分散アプローチである。
本稿では、フェデレート最適化アルゴリズムの定式化、設計、評価、分析に関する勧告とガイドラインを提供する。
論文 参考訳(メタデータ) (2021-07-14T18:09:08Z) - Dictionary and prior learning with unrolled algorithms for unsupervised
inverse problems [12.54744464424354]
本稿では,二段階問題として,劣化測定による辞書と事前学習について検討する。
合成と解析の近似定式化を解くために, アンロールアルゴリズムを利用する。
論文 参考訳(メタデータ) (2021-06-11T12:21:26Z) - Learning with Differentiable Perturbed Optimizers [54.351317101356614]
本稿では,操作を微分可能で局所的に一定ではない操作に変換する手法を提案する。
提案手法は摂動に依拠し,既存の解法とともに容易に利用することができる。
本稿では,この枠組みが,構造化予測において発達した損失の族とどのように結びつくかを示し,学習課題におけるそれらの使用に関する理論的保証を与える。
論文 参考訳(メタデータ) (2020-02-20T11:11:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。