Visual Polarization Measurement Using Counterfactual Image Generation
- URL: http://arxiv.org/abs/2503.10738v1
- Date: Thu, 13 Mar 2025 16:32:07 GMT
- Title: Visual Polarization Measurement Using Counterfactual Image Generation
- Authors: Mohammad Mosaffa, Omid Rafieian, Hema Yoganarasimhan,
- Abstract summary: We introduce the Polarization Measurement using Counterfactual Image Generation (PMCIG) method.<n>We identify significant polarization in visual content, with notable variations across outlets and politicians.<n>At the politician level, our results reveal substantial variation in polarized coverage, with Donald Trump and Barack Obama among the most polarizing figures.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Political polarization is a significant issue in American politics, influencing public discourse, policy, and consumer behavior. While studies on polarization in news media have extensively focused on verbal content, non-verbal elements, particularly visual content, have received less attention due to the complexity and high dimensionality of image data. Traditional descriptive approaches often rely on feature extraction from images, leading to biased polarization estimates due to information loss. In this paper, we introduce the Polarization Measurement using Counterfactual Image Generation (PMCIG) method, which combines economic theory with generative models and multi-modal deep learning to fully utilize the richness of image data and provide a theoretically grounded measure of polarization in visual content. Applying this framework to a decade-long dataset featuring 30 prominent politicians across 20 major news outlets, we identify significant polarization in visual content, with notable variations across outlets and politicians. At the news outlet level, we observe significant heterogeneity in visual slant. Outlets such as Daily Mail, Fox News, and Newsmax tend to favor Republican politicians in their visual content, while The Washington Post, USA Today, and The New York Times exhibit a slant in favor of Democratic politicians. At the politician level, our results reveal substantial variation in polarized coverage, with Donald Trump and Barack Obama among the most polarizing figures, while Joe Manchin and Susan Collins are among the least. Finally, we conduct a series of validation tests demonstrating the consistency of our proposed measures with external measures of media slant that rely on non-image-based sources.
Related papers
- Visual Political Communication in a Polarized Society: A Longitudinal
Study of Brazilian Presidential Elections on Instagram [0.3495246564946556]
This study aims to investigate the visual communication strategies employed in a dataset of 11,263 Instagram posts by 19 Brazilian presidential candidates.
We identify a prevalence of celebratory and positively toned images.
They also exhibit a strong sense of personalization, portraying candidates connected with their voters on a more emotional level.
arXiv Detail & Related papers (2023-09-30T12:11:11Z) - Understanding Divergent Framing of the Supreme Court Controversies:
Social Media vs. News Outlets [56.67097829383139]
We focus on the nuanced distinctions in framing of social media and traditional media outlets concerning a series of U.S. Supreme Court rulings.
We observe significant polarization in the news media's treatment of affirmative action and abortion rights, whereas the topic of student loans tends to exhibit a greater degree of consensus.
arXiv Detail & Related papers (2023-09-18T06:40:21Z) - The Face of Populism: Examining Differences in Facial Emotional Expressions of Political Leaders Using Machine Learning [50.24983453990065]
We use a deep-learning approach to process a sample of 220 YouTube videos of political leaders from 15 different countries.
We observe statistically significant differences in the average score of negative emotions between groups of leaders with varying degrees of populist rhetoric.
arXiv Detail & Related papers (2023-04-19T18:32:49Z) - Bias or Diversity? Unraveling Fine-Grained Thematic Discrepancy in U.S.
News Headlines [63.52264764099532]
We use a large dataset of 1.8 million news headlines from major U.S. media outlets spanning from 2014 to 2022.
We quantify the fine-grained thematic discrepancy related to four prominent topics - domestic politics, economic issues, social issues, and foreign affairs.
Our findings indicate that on domestic politics and social issues, the discrepancy can be attributed to a certain degree of media bias.
arXiv Detail & Related papers (2023-03-28T03:31:37Z) - Unveiling the Hidden Agenda: Biases in News Reporting and Consumption [59.55900146668931]
We build a six-year dataset on the Italian vaccine debate and adopt a Bayesian latent space model to identify narrative and selection biases.
We found a nonlinear relationship between biases and engagement, with higher engagement for extreme positions.
Analysis of news consumption on Twitter reveals common audiences among news outlets with similar ideological positions.
arXiv Detail & Related papers (2023-01-14T18:58:42Z) - Millions of Co-purchases and Reviews Reveal the Spread of Polarization
and Lifestyle Politics across Online Markets [68.8204255655161]
We study the pervasiveness of polarization and lifestyle politics over different product segments in a diverse market.
We sample 234.6 million relations among 21.8 million market entities to find product categories that are politically relevant, aligned, and polarized.
Cultural products are 4 times more polarized than any other segment.
arXiv Detail & Related papers (2022-01-17T18:16:37Z) - Examining Similar and Ideologically Correlated Imagery in Online
Political Communication [0.0]
This paper investigates visual media shared by U.S. national politicians on Twitter.
It shows how a politician's variety of image types shared reflects their political position.
It also identifies a hazard in using standard methods for image characterization in this context.
arXiv Detail & Related papers (2021-10-04T04:45:10Z) - Reaching the bubble may not be enough: news media role in online
political polarization [58.720142291102135]
A way of reducing polarization would be by distributing cross-partisan news among individuals with distinct political orientations.
This study investigates whether this holds in the context of nationwide elections in Brazil and Canada.
arXiv Detail & Related papers (2021-09-18T11:34:04Z) - Enabling News Consumers to View and Understand Biased News Coverage: A
Study on the Perception and Visualization of Media Bias [7.092487352312782]
We create three manually annotated datasets and test varying visualization strategies.
Results show no strong effects of becoming aware of the bias of the treatment groups compared to the control group.
Using a multilevel model, we find that perceived journalist bias is significantly related to perceived political extremeness and impartiality of the article.
arXiv Detail & Related papers (2021-05-20T10:16:54Z) - Mundus vult decipi, ergo decipiatur: Visual Communication of Uncertainty
in Election Polls [56.8172499765118]
We discuss potential sources of bias in nowcasting and forecasting.
Concepts are presented to attenuate the issue of falsely perceived accuracy.
One key idea is the use of Probabilities of Events instead of party shares.
arXiv Detail & Related papers (2021-04-28T07:02:24Z) - Political Polarization in Online News Consumption [14.276551496332154]
Political polarization appears to be on the rise, as measured by voting behavior.
Research over the years has focused on the role of the Web as a driver of polarization.
We show that online news consumption follows a polarized pattern, where users' visits to news sources aligned with their own political leaning are substantially longer than their visits to other news sources.
arXiv Detail & Related papers (2021-04-09T22:35:46Z) - Publishing patterns reflect political polarization in news media [1.5039745292757671]
We show how contributors' publishing trajectories tend to align with outlet political leanings.
We also show how contributors who cross partisan divides tend to focus on less explicitly political topics.
arXiv Detail & Related papers (2021-01-13T13:26:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.