論文の概要: Phishsense-1B: A Technical Perspective on an AI-Powered Phishing Detection Model
- arxiv url: http://arxiv.org/abs/2503.10944v1
- Date: Thu, 13 Mar 2025 23:03:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-17 13:08:06.775815
- Title: Phishsense-1B: A Technical Perspective on an AI-Powered Phishing Detection Model
- Title(参考訳): Phishsense-1B:AIを利用したフィッシング検出モデルに関する技術的展望
- Authors: SE Blake,
- Abstract要約: フィッシングは、今日のデジタルランドスケープにおいて永続的なサイバーセキュリティの脅威である。
本稿では,Llama-Guard-3-1Bモデルの改良版であるPhishsense-1Bを紹介する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Phishing is a persistent cybersecurity threat in today's digital landscape. This paper introduces Phishsense-1B, a refined version of the Llama-Guard-3-1B model, specifically tailored for phishing detection and reasoning. This adaptation utilizes Low-Rank Adaptation (LoRA) and the GuardReasoner finetuning methodology. We outline our LoRA-based fine-tuning process, describe the balanced dataset comprising phishing and benign emails, and highlight significant performance improvements over the original model. Our findings indicate that Phishsense-1B achieves an impressive 97.5% accuracy on a custom dataset and maintains strong performance with 70% accuracy on a challenging real-world dataset. This performance notably surpasses both unadapted models and BERT-based detectors. Additionally, we examine current state-of-the-art detection methods, compare prompt-engineering with fine-tuning strategies, and explore potential deployment scenarios.
- Abstract(参考訳): フィッシングは、今日のデジタルランドスケープにおいて永続的なサイバーセキュリティの脅威である。
本稿では,Llama-Guard-3-1Bモデルの改良版であるPhishsense-1Bを紹介する。
この適応にはLoRA(Lo-Rank Adaptation)とGuardReasonerファインタニング手法が使用されている。
LoRAベースの微調整プロセスを概説し、フィッシングと良質なEメールを含むバランスの取れたデータセットを記述し、元のモデルに対する大幅なパフォーマンス改善を強調した。
この結果は、Phishsense-1Bがカスタムデータセットで97.5%の精度を達成し、挑戦的な現実世界データセットで70%の精度で強力なパフォーマンスを維持することを示唆している。
この性能は、未適応モデルとBERTベースの検出器の両方を上回っている。
さらに、現状の最先端検出手法について検討し、プロンプトエンジニアリングと微調整戦略を比較し、潜在的な展開シナリオについて検討する。
関連論文リスト
- PhishGuard: A Multi-Layered Ensemble Model for Optimal Phishing Website Detection [0.0]
フィッシング攻撃はサイバーセキュリティの脅威の増大であり、悪意のあるウェブサイトを通じて機密情報を盗むのに詐欺的手法を活用している。
本稿では、フィッシングサイト検出を改善するために設計された最適なカスタムアンサンブルモデルであるPhishGuardを紹介する。
このモデルは、ランダムフォレスト、グラディエントブースティング、CatBoost、XGBoostを含む複数の機械学習分類器を組み合わせて、検出精度を高める。
論文 参考訳(メタデータ) (2024-09-29T23:15:57Z) - Open-Set Deepfake Detection: A Parameter-Efficient Adaptation Method with Forgery Style Mixture [58.60915132222421]
本稿では,顔偽造検出に汎用的かつパラメータ効率の高い手法を提案する。
フォージェリー・ソース・ドメインの多様性を増大させるフォージェリー・ミックス・フォーミュレーションを設計する。
設計したモデルは、トレーニング可能なパラメータを著しく減らし、最先端の一般化性を実現する。
論文 参考訳(メタデータ) (2024-08-23T01:53:36Z) - Lazy Layers to Make Fine-Tuned Diffusion Models More Traceable [70.77600345240867]
新たな任意の任意配置(AIAO)戦略は、微調整による除去に耐性を持たせる。
拡散モデルの入力/出力空間のバックドアを設計する既存の手法とは異なり,本手法では,サンプルサブパスの特徴空間にバックドアを埋め込む方法を提案する。
MS-COCO,AFHQ,LSUN,CUB-200,DreamBoothの各データセットに関する実証研究により,AIAOの堅牢性が確認された。
論文 参考訳(メタデータ) (2024-05-01T12:03:39Z) - PhishGuard: A Convolutional Neural Network Based Model for Detecting Phishing URLs with Explainability Analysis [1.102674168371806]
フィッシングURLの識別は、この問題に対処する最善の方法だ。
フィッシングURLの検出を自動化するために,機械学習と深層学習の手法が提案されている。
本稿では,1次元畳み込みニューラルネットワーク(CNN)を提案する。
論文 参考訳(メタデータ) (2024-04-27T17:13:49Z) - A Sophisticated Framework for the Accurate Detection of Phishing Websites [0.0]
フィッシング(英: Phishing)は、ますます洗練されたサイバー攻撃形態であり、世界中の企業に巨額の経済的損害を与えている。
本稿では,フィッシングサイトを検出するための包括的手法を提案する。
特徴選択, 欲求アルゴリズム, クロスバリデーション, 深層学習を組み合わせて, 洗練された積み重ねアンサンブルを構築している。
論文 参考訳(メタデータ) (2024-03-13T14:26:25Z) - AntiPhishStack: LSTM-based Stacked Generalization Model for Optimized
Phishing URL Detection [0.32141666878560626]
本稿では,フィッシングサイトを検出するための2相スタック一般化モデルであるAntiPhishStackを提案する。
このモデルは、URLと文字レベルのTF-IDF特徴の学習を対称的に活用し、新たなフィッシング脅威に対処する能力を高める。
良性およびフィッシングまたは悪意のあるURLを含む2つのベンチマークデータセットに対する実験的検証は、既存の研究と比較して96.04%の精度で、このモデルの例外的な性能を示している。
論文 参考訳(メタデータ) (2024-01-17T03:44:27Z) - Phishing Website Detection through Multi-Model Analysis of HTML Content [0.0]
本研究では,HTMLコンテンツに着目した高度な検出モデルを導入することにより,フィッシングのプレス問題に対処する。
提案手法は、構造化表データのための特殊多層パーセプトロン(MLP)モデルと、テキストの特徴を解析するための2つの事前学習自然言語処理(NLP)モデルを統合する。
2つのNLPと1つのモデルであるMultiText-LPの融合により、96.80 F1スコアと97.18精度スコアが得られた。
論文 参考訳(メタデータ) (2024-01-09T21:08:13Z) - Diffusion Denoising Process for Perceptron Bias in Out-of-distribution
Detection [67.49587673594276]
我々は、識別器モデルが入力の特定の特徴に対してより敏感であることを示唆する新しいパーセプトロンバイアスの仮定を導入し、過度な問題を引き起こした。
DMの拡散分解過程 (DDP) が非対称の新たな形態として機能し, 入力を高め, 過信問題を緩和するのに適していることを示す。
CIFAR10, CIFAR100, ImageNetによる実験により, 提案手法がSOTA手法より優れていることが示された。
論文 参考訳(メタデータ) (2022-11-21T08:45:08Z) - Watermarking for Out-of-distribution Detection [76.20630986010114]
Out-of-Distribution (OOD) 検出は、よく訓練された深層モデルから抽出された表現に基づいてOODデータを識別することを目的としている。
本稿では,透かしという一般的な手法を提案する。
我々は,元データの特徴に重畳される統一パターンを学習し,ウォーターマーキング後にモデルの検出能力が大きく向上する。
論文 参考訳(メタデータ) (2022-10-27T06:12:32Z) - Firearm Detection via Convolutional Neural Networks: Comparing a
Semantic Segmentation Model Against End-to-End Solutions [68.8204255655161]
武器の脅威検出とライブビデオからの攻撃的な行動は、潜在的に致命的な事故の迅速検出と予防に使用できる。
これを実現する一つの方法は、人工知能と、特に画像分析のための機械学習を使用することです。
従来のモノリシックなエンド・ツー・エンドのディープラーニングモデルと、セマンティクスセグメンテーションによって火花を検知する単純なニューラルネットワークのアンサンブルに基づく前述したモデルを比較した。
論文 参考訳(メタデータ) (2020-12-17T15:19:29Z) - Learnable Boundary Guided Adversarial Training [66.57846365425598]
私たちは、あるクリーンモデルからのモデルロジットを使用して、別のロバストモデルの学習をガイドします。
我々は、CIFAR-100上で、追加の実データや合成データなしで、新しい最先端のロバスト性を実現する。
論文 参考訳(メタデータ) (2020-11-23T01:36:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。