Configuration Design of Mechanical Assemblies using an Estimation of Distribution Algorithm and Constraint Programming
- URL: http://arxiv.org/abs/2503.11002v1
- Date: Fri, 14 Mar 2025 02:00:54 GMT
- Title: Configuration Design of Mechanical Assemblies using an Estimation of Distribution Algorithm and Constraint Programming
- Authors: Hyunmin Cheong, Mehran Ebrahimi, Adrian Butscher, Francesco Iorio,
- Abstract summary: A configuration design problem in mechanical engineering involves finding an optimal assembly of components and joints.<n>Such a problem is a discrete, constrained, and black-box optimization problem.<n>A novel method is developed to solve the problem by applying Bivariate Marginal Distribution Algorithm and constraint programming.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: A configuration design problem in mechanical engineering involves finding an optimal assembly of components and joints that realizes some desired performance criteria. Such a problem is a discrete, constrained, and black-box optimization problem. A novel method is developed to solve the problem by applying Bivariate Marginal Distribution Algorithm (BMDA) and constraint programming (CP). BMDA is a type of Estimation of Distribution Algorithm (EDA) that exploits the dependency knowledge learned between design variables without requiring too many fitness evaluations, which tend to be expensive for the current application. BMDA is extended with adaptive chi-square testing to identify dependencies and Gibbs sampling to generate new solutions. Also, repair operations based on CP are used to deal with infeasible solutions found during search. The method is applied to a vehicle suspension design problem and is found to be more effective in converging to good solutions than a genetic algorithm and other EDAs. These contributions are significant steps towards solving the difficult problem of configuration design in mechanical engineering with evolutionary computation.
Related papers
- Adaptive Knowledge-based Multi-Objective Evolutionary Algorithm for Hybrid Flow Shop Scheduling Problems with Multiple Parallel Batch Processing Stages [5.851739146497829]
This study generalizes the problem model, in which users can arbitrarily set certain stages as parallel batch processing stages.
An Adaptive Knowledge-based Multi-Objective Evolutionary Algorithm (AMOEA/D) is designed to simultaneously optimize both makespan and Total Energy Consumption.
The experimental results show that the AMOEA/D is superior to the comparison algorithms in solving the PBHFSP.
arXiv Detail & Related papers (2024-09-27T08:05:56Z) - Dynamic Decision Making in Engineering System Design: A Deep Q-Learning
Approach [1.3812010983144802]
We present a framework proposing the use of the Deep Q-learning algorithm to optimize the design of engineering systems.
The goal is to find policies that maximize the output of a simulation model given multiple sources of uncertainties.
We demonstrate the effectiveness of our proposed framework by solving two engineering system design problems in the presence of multiple uncertainties.
arXiv Detail & Related papers (2023-12-28T06:11:34Z) - Solution to Advanced Manufacturing Process Problems using Cohort
Intelligence Algorithm with Improved Constraint Handling Approaches [0.07989135005592125]
Cohort Intelligence (CI) algorithm is a socio inspired optimization technique which is successfully applied for solving several unconstrained & constrained real-world problems from the domains such as design, manufacturing, supply chain, healthcare, etc.
arXiv Detail & Related papers (2023-10-16T05:40:23Z) - AbCD: A Component-wise Adjustable Framework for Dynamic Optimization
Problems [49.1574468325115]
Dynamic Optimization Problems (DOPs) are characterized by changes in the fitness landscape that can occur at any time and are common in real world applications.
We develop a component-oriented framework for DOPs called Adjustable Components for Dynamic Problems (AbCD)
Our results highlight existing problems in the DOP field that need to be addressed in the future development of algorithms and components.
arXiv Detail & Related papers (2023-10-09T08:11:31Z) - Bayesian Quality-Diversity approaches for constrained optimization
problems with mixed continuous, discrete and categorical variables [0.3626013617212667]
A new Quality-Diversity methodology based on mixed variables is proposed in the context of limited simulation budget.
The proposed approach provides valuable trade-offs for decision-markers for complex system design.
arXiv Detail & Related papers (2023-09-11T14:29:47Z) - A Multi-Head Ensemble Multi-Task Learning Approach for Dynamical
Computation Offloading [62.34538208323411]
We propose a multi-head ensemble multi-task learning (MEMTL) approach with a shared backbone and multiple prediction heads (PHs)
MEMTL outperforms benchmark methods in both the inference accuracy and mean square error without requiring additional training data.
arXiv Detail & Related papers (2023-09-02T11:01:16Z) - Let the Flows Tell: Solving Graph Combinatorial Optimization Problems
with GFlowNets [86.43523688236077]
Combinatorial optimization (CO) problems are often NP-hard and out of reach for exact algorithms.
GFlowNets have emerged as a powerful machinery to efficiently sample from composite unnormalized densities sequentially.
In this paper, we design Markov decision processes (MDPs) for different problems and propose to train conditional GFlowNets to sample from the solution space.
arXiv Detail & Related papers (2023-05-26T15:13:09Z) - Hybrid ACO-CI Algorithm for Beam Design problems [0.4397520291340694]
A novel hybrid version of the Ant colony optimization (ACO) method is developed using the sample space reduction technique of the Cohort Intelligence (CI) algorithm.
The proposed work could be investigate for real world applications encompassing domains of engineering, and health care problems.
arXiv Detail & Related papers (2023-03-29T04:37:14Z) - Validation Diagnostics for SBI algorithms based on Normalizing Flows [55.41644538483948]
This work proposes easy to interpret validation diagnostics for multi-dimensional conditional (posterior) density estimators based on NF.
It also offers theoretical guarantees based on results of local consistency.
This work should help the design of better specified models or drive the development of novel SBI-algorithms.
arXiv Detail & Related papers (2022-11-17T15:48:06Z) - Multi-Resource Allocation for On-Device Distributed Federated Learning
Systems [79.02994855744848]
This work poses a distributed multi-resource allocation scheme for minimizing the weighted sum of latency and energy consumption in the on-device distributed federated learning (FL) system.
Each mobile device in the system engages the model training process within the specified area and allocates its computation and communication resources for deriving and uploading parameters, respectively.
arXiv Detail & Related papers (2022-11-01T14:16:05Z) - Offline Model-Based Optimization via Normalized Maximum Likelihood
Estimation [101.22379613810881]
We consider data-driven optimization problems where one must maximize a function given only queries at a fixed set of points.
This problem setting emerges in many domains where function evaluation is a complex and expensive process.
We propose a tractable approximation that allows us to scale our method to high-capacity neural network models.
arXiv Detail & Related papers (2021-02-16T06:04:27Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
Security-constrained optimal power flow (SCOPF) is fundamental in power systems.
Modeling of APR within the SCOPF problem results in complex large-scale mixed-integer programs.
This paper proposes a novel approach that combines deep learning and robust optimization techniques.
arXiv Detail & Related papers (2020-07-14T12:38:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.