Dynamic Decision Making in Engineering System Design: A Deep Q-Learning
Approach
- URL: http://arxiv.org/abs/2312.17284v1
- Date: Thu, 28 Dec 2023 06:11:34 GMT
- Title: Dynamic Decision Making in Engineering System Design: A Deep Q-Learning
Approach
- Authors: Ramin Giahi, Cameron A. MacKenzie, Reyhaneh Bijari
- Abstract summary: We present a framework proposing the use of the Deep Q-learning algorithm to optimize the design of engineering systems.
The goal is to find policies that maximize the output of a simulation model given multiple sources of uncertainties.
We demonstrate the effectiveness of our proposed framework by solving two engineering system design problems in the presence of multiple uncertainties.
- Score: 1.3812010983144802
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Engineering system design, viewed as a decision-making process, faces
challenges due to complexity and uncertainty. In this paper, we present a
framework proposing the use of the Deep Q-learning algorithm to optimize the
design of engineering systems. We outline a step-by-step framework for
optimizing engineering system designs. The goal is to find policies that
maximize the output of a simulation model given multiple sources of
uncertainties. The proposed algorithm handles linear and non-linear multi-stage
stochastic problems, where decision variables are discrete, and the objective
function and constraints are assessed via a Monte Carlo simulation. We
demonstrate the effectiveness of our proposed framework by solving two
engineering system design problems in the presence of multiple uncertainties,
such as price and demand.
Related papers
- Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
We present a comprehensive study on the integration of machine learning (ML) techniques into Huawei Cloud's OptVerse AI solver.
We showcase our methods for generating complex SAT and MILP instances utilizing generative models that mirror multifaceted structures of real-world problem.
We detail the incorporation of state-of-the-art parameter tuning algorithms which markedly elevate solver performance.
arXiv Detail & Related papers (2024-01-11T15:02:15Z) - Bayesian Quality-Diversity approaches for constrained optimization
problems with mixed continuous, discrete and categorical variables [0.3626013617212667]
A new Quality-Diversity methodology based on mixed variables is proposed in the context of limited simulation budget.
The proposed approach provides valuable trade-offs for decision-markers for complex system design.
arXiv Detail & Related papers (2023-09-11T14:29:47Z) - Distributionally Robust Model-based Reinforcement Learning with Large
State Spaces [55.14361269378122]
Three major challenges in reinforcement learning are the complex dynamical systems with large state spaces, the costly data acquisition processes, and the deviation of real-world dynamics from the training environment deployment.
We study distributionally robust Markov decision processes with continuous state spaces under the widely used Kullback-Leibler, chi-square, and total variation uncertainty sets.
We propose a model-based approach that utilizes Gaussian Processes and the maximum variance reduction algorithm to efficiently learn multi-output nominal transition dynamics.
arXiv Detail & Related papers (2023-09-05T13:42:11Z) - Multi-Objective Policy Gradients with Topological Constraints [108.10241442630289]
We present a new algorithm for a policy gradient in TMDPs by a simple extension of the proximal policy optimization (PPO) algorithm.
We demonstrate this on a real-world multiple-objective navigation problem with an arbitrary ordering of objectives both in simulation and on a real robot.
arXiv Detail & Related papers (2022-09-15T07:22:58Z) - Automated Circuit Sizing with Multi-objective Optimization based on
Differential Evolution and Bayesian Inference [1.1579778934294358]
We introduce a design optimization method based on Generalized Differential Evolution 3 (GDE3) and Gaussian Processes (GPs)
The proposed method is able to perform sizing for complex circuits with a large number of design variables and many conflicting objectives to be optimized.
We evaluate the introduced method on two voltage regulators showing different levels of complexity.
arXiv Detail & Related papers (2022-06-06T06:48:45Z) - Robust Topology Optimization Using Multi-Fidelity Variational Autoencoders [1.0124625066746595]
A robust topology optimization (RTO) problem identifies a design with the best average performance.
A neural network method is proposed that offers computational efficiency.
Numerical application of the method is shown on the robust design of L-bracket structure with single point load as well as multiple point loads.
arXiv Detail & Related papers (2021-07-19T20:40:51Z) - Learning MDPs from Features: Predict-Then-Optimize for Sequential
Decision Problems by Reinforcement Learning [52.74071439183113]
We study the predict-then-optimize framework in the context of sequential decision problems (formulated as MDPs) solved via reinforcement learning.
Two significant computational challenges arise in applying decision-focused learning to MDPs.
arXiv Detail & Related papers (2021-06-06T23:53:31Z) - Machine Learning Framework for Quantum Sampling of Highly-Constrained,
Continuous Optimization Problems [101.18253437732933]
We develop a generic, machine learning-based framework for mapping continuous-space inverse design problems into surrogate unconstrained binary optimization problems.
We showcase the framework's performance on two inverse design problems by optimizing thermal emitter topologies for thermophotovoltaic applications and (ii) diffractive meta-gratings for highly efficient beam steering.
arXiv Detail & Related papers (2021-05-06T02:22:23Z) - Analog Circuit Design with Dyna-Style Reinforcement Learning [12.232323973906773]
We present a learning based approach to analog circuit design, where the goal is to optimize circuit performance subject to certain design constraints.
We propose a method with two key properties. First, it learns a reward model, i.e., surrogate model of the performance approximated by neural networks, to reduce the required number of simulation.
Second, it uses a policy generator to explore the diverse solution space satisfying constraints. The results show that, compared to the model-free method applied with 20,000 circuit simulations to train the policy, DynaOpt achieves even much better performance by learning from scratch with only 500 simulations.
arXiv Detail & Related papers (2020-11-16T00:19:25Z) - A Unifying Framework for Reinforcement Learning and Planning [2.564530030795554]
This paper presents a unifying algorithmic framework for reinforcement learning and planning (FRAP)
At the end of the paper, we compare a variety of well-known planning, model-free and model-based RL algorithms along these dimensions.
arXiv Detail & Related papers (2020-06-26T14:30:41Z) - Automatically Learning Compact Quality-aware Surrogates for Optimization
Problems [55.94450542785096]
Solving optimization problems with unknown parameters requires learning a predictive model to predict the values of the unknown parameters and then solving the problem using these values.
Recent work has shown that including the optimization problem as a layer in a complex training model pipeline results in predictions of iteration of unobserved decision making.
We show that we can improve solution quality by learning a low-dimensional surrogate model of a large optimization problem.
arXiv Detail & Related papers (2020-06-18T19:11:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.