Multi-View Industrial Anomaly Detection with Epipolar Constrained Cross-View Fusion
- URL: http://arxiv.org/abs/2503.11088v1
- Date: Fri, 14 Mar 2025 05:02:54 GMT
- Title: Multi-View Industrial Anomaly Detection with Epipolar Constrained Cross-View Fusion
- Authors: Yifan Liu, Xun Xu, Shijie Li, Jingyi Liao, Xulei Yang,
- Abstract summary: We introduce an epipolar geometry-constrained attention module to guide cross-view fusion.<n>To further enhance the potential of cross-view attention, we propose a pretraining strategy inspired by memory bank-based anomaly detection.<n>We demonstrate that our framework outperforms existing methods on the state-of-the-art multi-view anomaly detection dataset.
- Score: 15.819291772583393
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-camera systems provide richer contextual information for industrial anomaly detection. However, traditional methods process each view independently, disregarding the complementary information across viewpoints. Existing multi-view anomaly detection approaches typically employ data-driven cross-view attention for feature fusion but fail to leverage the unique geometric properties of multi-camera setups. In this work, we introduce an epipolar geometry-constrained attention module to guide cross-view fusion, ensuring more effective information aggregation. To further enhance the potential of cross-view attention, we propose a pretraining strategy inspired by memory bank-based anomaly detection. This approach encourages normal feature representations to form multiple local clusters and incorporate multi-view aware negative sample synthesis to regularize pretraining. We demonstrate that our epipolar guided multi-view anomaly detection framework outperforms existing methods on the state-of-the-art multi-view anomaly detection dataset.
Related papers
- Learning Multi-view Multi-class Anomaly Detection [10.199404082194947]
We introduce a Multi-View Multi-Class Anomaly Detection model (MVMCAD), which integrates information from multiple views to accurately identify anomalies.
Specifically, we propose a semi-frozen encoder, where a pre-encoder prior enhancement mechanism is added before the frozen encoder.
An Anomaly Amplification Module (AAM) that models global token interactions and suppresses normal regions, and a Cross-Feature Loss that aligns shallow encoder features with deep decoder features.
arXiv Detail & Related papers (2025-04-30T03:59:58Z) - Multi-Flow: Multi-View-Enriched Normalizing Flows for Industrial Anomaly Detection [20.499874396491347]
We propose Multi-Flow, a novel multi-view anomaly detection method.
It makes use of a novel multi-view architecture, whose exact likelihood estimation is enhanced by fusing information across different views.
We empirically validate it on the real-world multi-view data set Real-IAD and reach a new state-of-the-art.
arXiv Detail & Related papers (2025-04-04T09:32:01Z) - Regularized Contrastive Partial Multi-view Outlier Detection [76.77036536484114]
We propose a novel method named Regularized Contrastive Partial Multi-view Outlier Detection (RCPMOD)
In this framework, we utilize contrastive learning to learn view-consistent information and distinguish outliers by the degree of consistency.
Experimental results on four benchmark datasets demonstrate that our proposed approach could outperform state-of-the-art competitors.
arXiv Detail & Related papers (2024-08-02T14:34:27Z) - Debunking Free Fusion Myth: Online Multi-view Anomaly Detection with
Disentangled Product-of-Experts Modeling [25.02446577349165]
Multi-view or even multi-modal data is appealing yet challenging for real-world applications.
We propose dPoE, a novel multi-view variational autoencoder model that involves (1) a Product-of-Experts layer in tackling multi-view data, (2) a Total Correction discriminator in disentangling view-common and view-specific representations, and (3) a joint loss function in wrapping up all components.
arXiv Detail & Related papers (2023-10-28T15:14:43Z) - Sketched Multi-view Subspace Learning for Hyperspectral Anomalous Change
Detection [12.719327447589345]
A sketched multi-view subspace learning model is proposed for anomalous change detection.
The proposed model preserves major information from the image pairs and improves computational complexity.
experiments are conducted on a benchmark hyperspectral remote sensing dataset and a natural hyperspectral dataset.
arXiv Detail & Related papers (2022-10-09T14:08:17Z) - Target-aware Dual Adversarial Learning and a Multi-scenario
Multi-Modality Benchmark to Fuse Infrared and Visible for Object Detection [65.30079184700755]
This study addresses the issue of fusing infrared and visible images that appear differently for object detection.
Previous approaches discover commons underlying the two modalities and fuse upon the common space either by iterative optimization or deep networks.
This paper proposes a bilevel optimization formulation for the joint problem of fusion and detection, and then unrolls to a target-aware Dual Adversarial Learning (TarDAL) network for fusion and a commonly used detection network.
arXiv Detail & Related papers (2022-03-30T11:44:56Z) - Object-centric and memory-guided normality reconstruction for video
anomaly detection [56.64792194894702]
This paper addresses anomaly detection problem for videosurveillance.
Due to the inherent rarity and heterogeneity of abnormal events, the problem is viewed as a normality modeling strategy.
Our model learns object-centric normal patterns without seeing anomalous samples during training.
arXiv Detail & Related papers (2022-03-07T19:28:39Z) - Self-Supervised Predictive Convolutional Attentive Block for Anomaly
Detection [97.93062818228015]
We propose to integrate the reconstruction-based functionality into a novel self-supervised predictive architectural building block.
Our block is equipped with a loss that minimizes the reconstruction error with respect to the masked area in the receptive field.
We demonstrate the generality of our block by integrating it into several state-of-the-art frameworks for anomaly detection on image and video.
arXiv Detail & Related papers (2021-11-17T13:30:31Z) - Multi-Perspective Anomaly Detection [3.3511723893430476]
We build upon the deep support vector data description algorithm and address multi-perspective anomaly detection.
We employ different augmentation techniques with a denoising process to deal with scarce one-class data.
We evaluate our approach on the new dices dataset using images from two different perspectives and also benchmark on the standard MNIST dataset.
arXiv Detail & Related papers (2021-05-20T17:07:36Z) - Self-supervised Human Detection and Segmentation via Multi-view
Consensus [116.92405645348185]
We propose a multi-camera framework in which geometric constraints are embedded in the form of multi-view consistency during training.
We show that our approach outperforms state-of-the-art self-supervised person detection and segmentation techniques on images that visually depart from those of standard benchmarks.
arXiv Detail & Related papers (2020-12-09T15:47:21Z) - Unsupervised Multi-view Clustering by Squeezing Hybrid Knowledge from
Cross View and Each View [68.88732535086338]
This paper proposes a new multi-view clustering method, low-rank subspace multi-view clustering based on adaptive graph regularization.
Experimental results for five widely used multi-view benchmarks show that our proposed algorithm surpasses other state-of-the-art methods by a clear margin.
arXiv Detail & Related papers (2020-08-23T08:25:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.