論文の概要: EmbodiedVSR: Dynamic Scene Graph-Guided Chain-of-Thought Reasoning for Visual Spatial Tasks
- arxiv url: http://arxiv.org/abs/2503.11089v1
- Date: Fri, 14 Mar 2025 05:06:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-17 22:04:29.185184
- Title: EmbodiedVSR: Dynamic Scene Graph-Guided Chain-of-Thought Reasoning for Visual Spatial Tasks
- Title(参考訳): EmbodiedVSR:視覚空間タスクのための動的シーングラフガイド型連鎖解析
- Authors: Yi Zhang, Qiang Zhang, Xiaozhu Ju, Zhaoyang Liu, Jilei Mao, Jingkai Sun, Jintao Wu, Shixiong Gao, Shihan Cai, Zhiyuan Qin, Linkai Liang, Jiaxu Wang, Yiqun Duan, Jiahang Cao, Renjing Xu, Jian Tang,
- Abstract要約: EmbodiedVSR (Embodied Visual Space Reasoning) は動的シーングラフ誘導型Chain-of-Thought (CoT)推論を統合する新しいフレームワークである。
本手法はタスク固有の微調整なしでゼロショット空間推論を可能にする。
実験により,我々のフレームワークは,既存のMLLM法よりも精度と推論コヒーレンスにおいて優れていることが示された。
- 参考スコア(独自算出の注目度): 24.41705039390567
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While multimodal large language models (MLLMs) have made groundbreaking progress in embodied intelligence, they still face significant challenges in spatial reasoning for complex long-horizon tasks. To address this gap, we propose EmbodiedVSR (Embodied Visual Spatial Reasoning), a novel framework that integrates dynamic scene graph-guided Chain-of-Thought (CoT) reasoning to enhance spatial understanding for embodied agents. By explicitly constructing structured knowledge representations through dynamic scene graphs, our method enables zero-shot spatial reasoning without task-specific fine-tuning. This approach not only disentangles intricate spatial relationships but also aligns reasoning steps with actionable environmental dynamics. To rigorously evaluate performance, we introduce the eSpatial-Benchmark, a comprehensive dataset including real-world embodied scenarios with fine-grained spatial annotations and adaptive task difficulty levels. Experiments demonstrate that our framework significantly outperforms existing MLLM-based methods in accuracy and reasoning coherence, particularly in long-horizon tasks requiring iterative environment interaction. The results reveal the untapped potential of MLLMs for embodied intelligence when equipped with structured, explainable reasoning mechanisms, paving the way for more reliable deployment in real-world spatial applications. The codes and datasets will be released soon.
- Abstract(参考訳): マルチモーダル大規模言語モデル(MLLM)は、インテリジェンスにおいて画期的な進歩を遂げてきたが、複雑な長距離タスクに対する空間的推論において、依然として大きな課題に直面している。
このギャップに対処するために,動的シーングラフ誘導型チェーン・オブ・ソート(CoT)推論を統合する新しいフレームワークであるEmbodiedVSR(Embodied Visual Space Reasoning)を提案する。
動的シーングラフを用いて構造化知識表現を明示的に構築することにより,タスク固有の微調整を伴わずにゼロショット空間推論が可能となる。
このアプローチは複雑な空間的関係を解き放つだけでなく、推論ステップを実行可能な環境力学と整合させる。
実世界の具体化シナリオと詳細な空間アノテーションと適応的タスク困難レベルを含む包括的データセットであるeSpatial-Benchmarkを導入する。
実験により,従来のMLLM法よりも,特に反復的環境相互作用を必要とする長期タスクにおいて,コヒーレンスの精度と推論において優れていたことが確認された。
その結果、構造化された説明可能な推論機構を備えた場合、MLLMの具体的インテリジェンスに対する未解決の可能性を明らかにし、現実の空間アプリケーションへのより信頼性の高い展開の道を開くことができた。
コードとデータセットはまもなくリリースされる予定だ。
関連論文リスト
- A Call for New Recipes to Enhance Spatial Reasoning in MLLMs [85.67171333213301]
MLLM(Multimodal Large Language Models)は、一般的な視覚言語タスクにおいて印象的な性能を示す。
近年の研究では、空間的推論能力の限界が明らかにされている。
この空間的推論の欠如は、MLLMが物理的世界と効果的に相互作用する能力を著しく制限する。
論文 参考訳(メタデータ) (2025-04-21T11:48:39Z) - Mind the Gap: Benchmarking Spatial Reasoning in Vision-Language Models [14.442394137843923]
本稿では,まず空間的推論のコア要素を記述した詳細な分析を行う。
次に、これらのモデルの性能を、合成画像と実画像の両方で評価する。
論文 参考訳(メタデータ) (2025-03-25T14:34:06Z) - EgoSplat: Open-Vocabulary Egocentric Scene Understanding with Language Embedded 3D Gaussian Splatting [108.15136508964011]
EgoSplatは、オープン・ボキャブラリ・エゴセントリック・シーン理解のための3Dガウス・スプレイティング・フレームワークである。
EgoSplatは2つのデータセット上のローカライゼーションタスクとセグメンテーションタスクの両方において、最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2025-03-14T12:21:26Z) - From Text to Space: Mapping Abstract Spatial Models in LLMs during a Grid-World Navigation Task [0.0]
グリッドワールドナビゲーションタスクにおける大規模言語モデル(LLM)の性能と内部アクティベーションに及ぼすテキストベース空間表現の影響について検討する。
実験の結果, 空間のカルデシアン表現は, モデルサイズに比例して高い成功率と経路効率が得られることがわかった。
この研究は、LLMが空間情報をどのように処理するかの理解を深め、より解釈可能で堅牢なエージェントAIシステムの開発に有用な洞察を提供する。
論文 参考訳(メタデータ) (2025-02-23T19:09:01Z) - SpatialCoT: Advancing Spatial Reasoning through Coordinate Alignment and Chain-of-Thought for Embodied Task Planning [42.487500113839666]
視覚言語モデル(VLM)の空間的推論能力を高める新しい手法を提案する。
提案手法は,空間座標二方向アライメントとチェーン・オブ・ザ・スペース・グラウンドリングの2段階からなる。
シミュレーションと実環境設定の両方において,ナビゲーションタスクと操作タスクに挑戦する手法を評価する。
論文 参考訳(メタデータ) (2025-01-17T09:46:27Z) - Sparkle: Mastering Basic Spatial Capabilities in Vision Language Models Elicits Generalization to Spatial Reasoning [19.399925987942204]
視覚言語モデル (VLM) は、幅広い下流タスクにおいて印象的なパフォーマンスを示している。
ほとんどのタスクは、2次元(2D)環境でのコア空間推論能力に依存している。
本稿では,合成データ生成を用いて視覚言語モデル(VLM)を3つの基本的な空間的能力で監視するフレームワークであるSparkleを紹介する。
論文 参考訳(メタデータ) (2024-10-21T16:26:09Z) - Flex: End-to-End Text-Instructed Visual Navigation with Foundation Models [59.892436892964376]
本稿では,視覚に基づく制御ポリシを用いて,ロバストな閉ループ性能を実現するために必要な最小限のデータ要件とアーキテクチャ適応について検討する。
この知見はFlex (Fly-lexically) で合成され,VLM(Vision Language Models) をフリーズしたパッチワイド特徴抽出器として利用するフレームワークである。
本研究では,本手法が4段階のフライ・トゥ・ターゲットタスクにおいて有効であることを示す。
論文 参考訳(メタデータ) (2024-10-16T19:59:31Z) - ET-Plan-Bench: Embodied Task-level Planning Benchmark Towards Spatial-Temporal Cognition with Foundation Models [38.89166693142495]
ET-Plan-Benchは、Large Language Models (LLMs) を用いたタスク計画の具体化のためのベンチマークである。
様々な難易度や複雑さのレベルにおいて、制御可能で多様な実施タスクが特徴である。
我々のベンチマークでは、大規模で定量化され、高度に自動化され、きめ細かな診断フレームワークとして認識されている。
論文 参考訳(メタデータ) (2024-10-02T19:56:38Z) - REVISION: Rendering Tools Enable Spatial Fidelity in Vision-Language Models [67.55362046790512]
視覚言語モデルには、空間的関係を正しく推論する能力がない。
視覚言語モデルにおける空間忠実度を改善するREVISIONフレームワークを開発した。
本研究の結果から,レンダリングベースのフレームワークは空間認識モデルの開発に有効な手法であることが示唆された。
論文 参考訳(メタデータ) (2024-08-05T04:51:46Z) - Entropy-Regularized Token-Level Policy Optimization for Language Agent Reinforcement [67.1393112206885]
大規模言語モデル(LLM)は、対話的な意思決定タスクにおいてインテリジェントなエージェントとして期待されている。
本稿では,トークンレベルでのLLMの最適化に適したエントロピー拡張RL法である,エントロピー正規化トークンレベル最適化(ETPO)を導入する。
我々は,データサイエンスコード生成を多段階対話型タスクのシリーズとしてモデル化したシミュレーション環境におけるETPOの有効性を評価する。
論文 参考訳(メタデータ) (2024-02-09T07:45:26Z) - DoraemonGPT: Toward Understanding Dynamic Scenes with Large Language Models (Exemplified as A Video Agent) [73.10899129264375]
本稿では,LLMによる動的シーン理解のための包括的かつ概念的にエレガントなシステムであるドラモンGPTについて検討する。
質問/タスクのあるビデオが与えられた場合、DoraemonGPTは入力されたビデオをタスク関連の属性を格納するシンボリックメモリに変換することから始める。
我々は,DoraemonGPTの有効性を,3つのベンチマークといくつかのアプリ内シナリオで広範囲に評価した。
論文 参考訳(メタデータ) (2024-01-16T14:33:09Z) - Temporal Predictive Coding For Model-Based Planning In Latent Space [80.99554006174093]
時間的に予測可能な環境要素を符号化するために,時間的予測符号化を用いた情報理論的手法を提案する。
本稿では,DMControl タスクの背景を複雑な情報を含む自然なビデオに置き換える,標準的な DMControl タスクの挑戦的な修正について評価する。
論文 参考訳(メタデータ) (2021-06-14T04:31:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。