論文の概要: MUSS: Multilevel Subset Selection for Relevance and Diversity
- arxiv url: http://arxiv.org/abs/2503.11126v1
- Date: Fri, 14 Mar 2025 06:37:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-17 13:06:27.527128
- Title: MUSS: Multilevel Subset Selection for Relevance and Diversity
- Title(参考訳): MUSS: 関連性と多様性のためのマルチレベルサブセット選択
- Authors: Vu Nguyen, Andrey Kan,
- Abstract要約: レコメンデーションシステムでは、さまざまなレコメンデーションを提供しながら、関連する項目を選択することに興味がある。
関連性および多種多様な選択に対する多レベルアプローチを用いた新しい手法であるMUSSを提案する。
本手法はベースラインと同等の性能を達成できるが, 4.5倍から20倍高速である。
- 参考スコア(独自算出の注目度): 4.8254343133177295
- License:
- Abstract: The problem of relevant and diverse subset selection has a wide range of applications, including recommender systems and retrieval-augmented generation (RAG). For example, in recommender systems, one is interested in selecting relevant items, while providing a diversified recommendation. Constrained subset selection problem is NP-hard, and popular approaches such as Maximum Marginal Relevance (MMR) are based on greedy selection. Many real-world applications involve large data, but the original MMR work did not consider distributed selection. This limitation was later addressed by a method called DGDS which allows for a distributed setting using random data partitioning. Here, we exploit structure in the data to further improve both scalability and performance on the target application. We propose MUSS, a novel method that uses a multilevel approach to relevant and diverse selection. We provide a rigorous theoretical analysis and show that our method achieves a constant factor approximation of the optimal objective. In a recommender system application, our method can achieve the same level of performance as baselines, but 4.5 to 20 times faster. Our method is also capable of outperforming baselines by up to 6 percent points of RAG-based question answering accuracy.
- Abstract(参考訳): 関連性があり多様なサブセット選択の問題には、レコメンダシステムや検索拡張生成(RAG)など、幅広い応用がある。
例えば、レコメンデーションシステムでは、さまざまなレコメンデーションを提供しながら、関連する項目を選択することに興味がある。
制約された部分集合選択問題はNPハードであり、MMR(Maximum Marginal Relevance)のような一般的なアプローチは欲求選択に基づいている。
多くの実世界のアプリケーションは大規模なデータを含むが、MMRの当初の作業は分散選択を考慮しなかった。
この制限は後にDGDSと呼ばれる方法で対処され、ランダムなデータパーティショニングを使った分散設定が可能になった。
ここでは、データの構造を利用して、ターゲットアプリケーションのスケーラビリティとパフォーマンスをさらに改善する。
関連性および多種多様な選択に対する多レベルアプローチを用いた新しい手法であるMUSSを提案する。
厳密な理論的解析を行い,本手法が最適目的の定数係数近似を実現することを示す。
推薦システムアプリケーションでは,本手法はベースラインと同程度の性能を達成できるが,4.5倍から20倍高速である。
また,RAGに基づく質問応答精度を最大6%向上させることができる。
関連論文リスト
- SMART-RAG: Selection using Determinantal Matrices for Augmented Retrieval [40.17823569905232]
Retrieval-Augmented Generation (RAG) は、大規模言語モデル(LLM)を大幅に改善し、正確で文脈に根ざした応答を生成する。
RAGアプローチは、クエリコンテキストの関連性のみに基づくトップランクのドキュメントを優先し、冗長性と矛盾する情報をしばしば導入する。
本稿では,RAGにおける文脈選択の最適化を目的とした,教師なしおよびトレーニング不要なフレームワークであるRAG(Mathrices for Augmented Retrieval)によるタスク応答のための選択を提案する。
論文 参考訳(メタデータ) (2024-09-21T03:03:09Z) - An incremental preference elicitation-based approach to learning potentially non-monotonic preferences in multi-criteria sorting [53.36437745983783]
まず最適化モデルを構築し,非単調な選好をモデル化する。
本稿では,情報量測定手法と質問選択戦略を考案し,各イテレーションにおいて最も情報に富む選択肢を特定する。
2つのインクリメンタルな選好に基づくアルゴリズムは、潜在的に単調な選好を学習するために開発された。
論文 参考訳(メタデータ) (2024-09-04T14:36:20Z) - Training Greedy Policy for Proposal Batch Selection in Expensive Multi-Objective Combinatorial Optimization [52.80408805368928]
本稿では,バッチ取得のための新しいグリーディ型サブセット選択アルゴリズムを提案する。
赤蛍光タンパク質に関する実験により,提案手法は1.69倍少ないクエリでベースライン性能を達成できることが判明した。
論文 参考訳(メタデータ) (2024-06-21T05:57:08Z) - Multi-Teacher Multi-Objective Meta-Learning for Zero-Shot Hyperspectral Band Selection [50.30291173608449]
ゼロショットハイパースペクトル帯選択のための新しい多目的メタラーニングネットワーク(M$3$BS)を提案する。
M$3$BSでは、データセットに依存しないベースを生成するために、一般化可能なグラフ畳み込みネットワーク(GCN)を構築している。
取得したメタ知識は、トレーニングや微調整なしに、直接見えないデータセットに転送することができる。
論文 参考訳(メタデータ) (2024-06-12T07:13:31Z) - Multi-Task Learning for Sparsity Pattern Heterogeneity: Statistical and Computational Perspectives [10.514866749547558]
マルチタスク学習(MTL)において、複数の線形モデルがデータセットの集合上で協調的に訓練される問題を考える。
我々のフレームワークの重要な特徴は、回帰係数のスパーシティパターンと非ゼロ係数の値がタスク間で異なることである。
提案手法は,1) 係数のサポートを個別に促進し,2) 非ゼロ係数の値を類似させることにより,タスク間の情報共有を奨励する。
これにより、非ゼロ係数値がタスク間で異なる場合でも、モデルが可変選択中に強度を借りることができる。
論文 参考訳(メタデータ) (2022-12-16T19:52:25Z) - Optimal Data Selection: An Online Distributed View [61.31708750038692]
この問題のオンライン版と分散版のアルゴリズムを開発する。
ランダム選択法は, ランダム選択法よりも5~20%高い性能を示した。
ImageNet と MNIST の学習タスクにおいて、我々の選択方法はランダム選択よりも5-20% 高い性能を示した。
論文 参考訳(メタデータ) (2022-01-25T18:56:16Z) - Filter Methods for Feature Selection in Supervised Machine Learning
Applications -- Review and Benchmark [0.0]
本稿では,特徴選択ベンチマークに関する文献を合成し,広く使用されているR環境における58の手法の性能評価を行う。
MLモデルでは難しい4つの典型的なデータセットシナリオについて検討する。
論文 参考訳(メタデータ) (2021-11-23T20:20:24Z) - Max-Utility Based Arm Selection Strategy For Sequential Query
Recommendations [16.986870945319293]
オンライン情報収集や探索分析のようなクローズドループ対話型学習環境におけるクエリレコメンデーション問題について考察する。
この問題は、数え切れないほど多くの腕を持つマルチアーマッド・バンド(MAB)フレームワークを使って、自然にモデル化することができる。
このような選択戦略がしばしば高い累積的後悔をもたらすことを示し、この結果から、武器の最大有効性に基づく選択戦略を提案する。
論文 参考訳(メタデータ) (2021-08-31T13:03:30Z) - Exploration in two-stage recommender systems [79.50534282841618]
2段階のレコメンデータシステムは、スケーラビリティと保守性のために業界で広く採用されている。
このセットアップの鍵となる課題は、各ステージの最適性能が最適なグローバルパフォーマンスを暗示していないことである。
そこで本研究では,ランクとノミネーター間の探索戦略を同期させる手法を提案する。
論文 参考訳(メタデータ) (2020-09-01T16:52:51Z) - Sample-Rank: Weak Multi-Objective Recommendations Using Rejection
Sampling [0.5156484100374059]
本稿では,マルチゴールサンプリングとユーザ関連度(Sample-Rank)のランク付けによるマーケットプレースの多目的目標への推薦手法を提案する。
提案手法の新規性は,望まれるマルチゴール分布からサンプリングするMOレコメンデーション問題を低減し,プロダクションフレンドリーな学習-ランクモデルを構築することである。
論文 参考訳(メタデータ) (2020-08-24T09:17:18Z) - Supervised Hyperalignment for multi-subject fMRI data alignment [81.8694682249097]
本稿では,MVP解析における機能的アライメントを改善するために,SHA(Supervised Hyperalignment)手法を提案する。
マルチオブジェクトデータセットの実験では、SHA法は最大19%の性能がマルチクラス問題に対して達成されている。
論文 参考訳(メタデータ) (2020-01-09T09:17:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。