論文の概要: SpaceSeg: A High-Precision Intelligent Perception Segmentation Method for Multi-Spacecraft On-Orbit Targets
- arxiv url: http://arxiv.org/abs/2503.11133v1
- Date: Fri, 14 Mar 2025 06:50:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-17 13:06:04.746657
- Title: SpaceSeg: A High-Precision Intelligent Perception Segmentation Method for Multi-Spacecraft On-Orbit Targets
- Title(参考訳): SpaceSeg:マルチスペースクラフトオン軌道ターゲットのための高精度知的知覚セグメンテーション手法
- Authors: Hao Liu, Pengyu Guo, Siyuan Yang, Zeqing Jiang, Qinglei Hu, Dongyu Li,
- Abstract要約: 本稿では,4つのコア技術革新を伴う革新的なビジョン基盤モデルに基づくセグメンテーションフレームワークであるSpaceSegを提案する。
テストでは、SpaceSegは89.87$%$ mIoUと99.98$%$ mAccで最先端のパフォーマンスを達成し、既存のベストメソッドを5.71ポイント上回る。
- 参考スコア(独自算出の注目度): 10.3603141724588
- License:
- Abstract: With the continuous advancement of human exploration into deep space, intelligent perception and high-precision segmentation technology for on-orbit multi-spacecraft targets have become critical factors for ensuring the success of modern space missions. However, the complex deep space environment, diverse imaging conditions, and high variability in spacecraft morphology pose significant challenges to traditional segmentation methods. This paper proposes SpaceSeg, an innovative vision foundation model-based segmentation framework with four core technical innovations: First, the Multi-Scale Hierarchical Attention Refinement Decoder (MSHARD) achieves high-precision feature decoding through cross-resolution feature fusion via hierarchical attention. Second, the Multi-spacecraft Connected Component Analysis (MS-CCA) effectively resolves topological structure confusion in dense targets. Third, the Spatial Domain Adaptation Transform framework (SDAT) eliminates cross-domain disparities and resist spatial sensor perturbations through composite enhancement strategies. Finally, a custom Multi-Spacecraft Segmentation Task Loss Function is created to significantly improve segmentation robustness in deep space scenarios. To support algorithm validation, we construct the first multi-scale on-orbit multi-spacecraft semantic segmentation dataset SpaceES, which covers four types of spatial backgrounds and 17 typical spacecraft targets. In testing, SpaceSeg achieves state-of-the-art performance with 89.87$\%$ mIoU and 99.98$\%$ mAcc, surpassing existing best methods by 5.71 percentage points. The dataset and code are open-sourced at https://github.com/Akibaru/SpaceSeg to provide critical technical support for next-generation space situational awareness systems.
- Abstract(参考訳): 深宇宙への人間探査の継続的な進歩により、軌道上多機目標のための知的知覚と高精度セグメンテーション技術は、現代の宇宙ミッションの成功を確実にするための重要な要素となっている。
しかし、複雑な深宇宙環境、多様な撮像条件、宇宙船形態学における高い可変性は、従来のセグメンテーション法に重大な課題をもたらす。
第一に,マルチスケール階層型アテンショナル・リファインメント・デコーダ(MSHARD)は,階層的注意によるクロスレゾリューション機能融合を通じて,高精度な特徴復号を実現する。
次に,Multi-space Connected Component Analysis (MS-CCA) により,高密度ターゲットのトポロジ的構造混乱を効果的に解消する。
第3に、空間領域適応変換フレームワーク(SDAT)は、クロスドメインの格差を排除し、複合強化戦略を通じて空間センサの摂動に抵抗する。
最後に、ディープスペースシナリオにおけるセグメンテーションの堅牢性を大幅に改善するために、カスタムのマルチスペースセグメンテーションタスクロス関数が作成されます。
アルゴリズムの検証を支援するため,宇宙空間の背景4種類と典型的な17種類の宇宙船を対象とする,マルチスケールのマルチ・オービット型セマンティックセマンティックセマンティックセマンティックデータセットSpaceESを構築した。
テストでは、SpaceSegは89.87$\%$ mIoUと99.98$\%$ mAccで最先端のパフォーマンスを達成した。
データセットとコードはhttps://github.com/Akibaru/SpaceSegでオープンソース公開されている。
関連論文リスト
- SPACE: 3D Spatial Co-operation and Exploration Framework for Robust Mapping and Coverage with Multi-Robot Systems [0.0]
マルチロボット・ヴィジュアル(RGB-D)マッピングと探索は、国内サービスやロジスティクスといった分野への応用にとって大きな可能性を秘めている。
主な課題は,(1)ロボットの視点の重なりによる「ゴースト・トレイル」効果,(2)探索のための最も効果的なフロンティアを選択する際の視覚再建の監督である。
室内環境における空間協調のための半分散型フレームワーク(SPACE)を提案する。
論文 参考訳(メタデータ) (2024-11-04T19:04:09Z) - Voxel Mamba: Group-Free State Space Models for Point Cloud based 3D Object Detection [59.34834815090167]
3Dボクセルをシリアライズして複数のシーケンスにグループ化し、トランスフォーマーに入力するシリアライズベースの手法は、3Dオブジェクト検出においてその効果を実証している。
グループフリー戦略を用いて、ボクセルの全空間を1つのシーケンスにシリアライズするVoxel SSMを提案する。
論文 参考訳(メタデータ) (2024-06-15T17:45:07Z) - GOI: Find 3D Gaussians of Interest with an Optimizable Open-vocabulary Semantic-space Hyperplane [53.388937705785025]
3Dオープンボキャブラリのシーン理解は、拡張現実とロボット応用の推進に不可欠である。
GOIは2次元視覚言語基礎モデルから3次元ガウススプラッティング(3DGS)に意味的特徴を統合するフレームワークである。
提案手法では,特徴空間内の超平面分割として特徴選択処理を扱い,クエリに関連性の高い特徴のみを保持する。
論文 参考訳(メタデータ) (2024-05-27T18:57:18Z) - Dual Attention U-Net with Feature Infusion: Pushing the Boundaries of
Multiclass Defect Segmentation [1.487252325779766]
提案アーキテクチャであるDual Attentive U-Net with Feature Infusion (DAU-FI Net)はセマンティックセグメンテーションにおける課題に対処する。
DAU-FI Netは、複数スケールの空間チャネルアテンション機構と特徴注入を統合し、オブジェクトのローカライゼーションの精度を高める。
挑戦的な下水道管と、欠陥データセットと、DAU-FI Netの能力を検証したベンチマークデータセットに関する総合的な実験。
論文 参考訳(メタデータ) (2023-12-21T17:23:49Z) - Searching a High-Performance Feature Extractor for Text Recognition
Network [92.12492627169108]
優れた特徴抽出器を持つための原理を探求し,ドメイン固有の検索空間を設計する。
空間は巨大で複雑な構造であるため、既存のNASアルゴリズムを適用することはできない。
本研究では,空間内を効率的に探索する2段階のアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-09-27T03:49:04Z) - Unifying Voxel-based Representation with Transformer for 3D Object
Detection [143.91910747605107]
マルチモード3Dオブジェクト検出のための統一フレームワークUVTRを提案する。
提案手法は, ボクセル空間におけるマルチモーダリティ表現を統一し, 高精度かつ堅牢な単一モード・クロスモーダリティ3D検出を実現することを目的とする。
UVTRは、69.7%、55.1%、71.1%のNDSで、それぞれLiDAR、カメラ、マルチモダリティの入力を行う。
論文 参考訳(メタデータ) (2022-06-01T17:02:40Z) - Maximum Spatial Perturbation Consistency for Unpaired Image-to-Image
Translation [56.44946660061753]
本稿では,最大空間摂動整合(MSPC)と呼ばれる普遍正規化手法を提案する。
MSPCは空間摂動関数(T)と変換演算子(G)を可換(TG = GT)に強制する。
提案手法は,ほとんどのI2Iベンチマークにおいて最先端の手法よりも優れている。
論文 参考訳(メタデータ) (2022-03-23T19:59:04Z) - AF$_2$: Adaptive Focus Framework for Aerial Imagery Segmentation [86.44683367028914]
航空画像のセグメンテーションにはいくつかの独特な課題があり、中でも最も重要なものは前景と背景のアンバランスにある。
本稿では,階層的なセグメンテーション手法を採用し,マルチスケール表現を適応的に活用するAdaptive Focus Framework (AF$)を提案する。
AF$は、広く使われている3つの航空ベンチマークの精度を大幅に改善した。
論文 参考訳(メタデータ) (2022-02-18T10:14:45Z) - Space Non-cooperative Object Active Tracking with Deep Reinforcement
Learning [1.212848031108815]
DRLAVTと命名されたDQNアルゴリズムに基づくエンドツーエンドのアクティブなトラッキング手法を提案する。
追尾宇宙船のアプローチを、色やRGBD画像にのみ依存した任意の空間の非協力目標に導くことができる。
位置ベースのビジュアルサーボベースラインアルゴリズムでは、最先端の2DモノクロトラッカーであるSiamRPNをはるかに上回っている。
論文 参考訳(メタデータ) (2021-12-18T06:12:24Z) - SPARK: SPAcecraft Recognition leveraging Knowledge of Space Environment [10.068428438297563]
本稿では、SPARKデータセットを新しいユニークな空間オブジェクトマルチモーダルイメージデータセットとして提案する。
SPARKデータセットは、現実的な宇宙シミュレーション環境下で生成される。
1モードあたり約150kの画像、RGBと深さ、宇宙船とデブリの11のクラスを提供する。
論文 参考訳(メタデータ) (2021-04-13T07:16:55Z) - Topological Sweep for Multi-Target Detection of Geostationary Space
Objects [43.539256589118644]
我々の研究は、静止軌道(GEO)における人工物体の光学的検出に焦点を当てている。
GEO物体検出は、明るい恒星の散らばりの中で小さな点として現れるターゲットの距離のために困難である。
本稿では,光画像の短いシーケンスからGEOオブジェクトを見つけるために,トポロジカルスイープに基づく新しいマルチターゲット検出手法を提案する。
論文 参考訳(メタデータ) (2020-03-21T06:00:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。