Physics-constrained DeepONet for Surrogate CFD models: a curved backward-facing step case
- URL: http://arxiv.org/abs/2503.11196v1
- Date: Fri, 14 Mar 2025 08:43:36 GMT
- Title: Physics-constrained DeepONet for Surrogate CFD models: a curved backward-facing step case
- Authors: Anas Jnini, Harshinee Goordoyal, Sujal Dave, Flavio Vella, Katharine H. Fraser, Artem Korobenko,
- Abstract summary: The PC-DeepONet architecture incorporates fundamental physics knowledge into the data-driven DeepONet model.<n>Both models attain convergence with a small dataset of 50 samples and require only 50 iterations for convergence.
- Score: 0.9565934024763958
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Physics-Constrained DeepONet (PC-DeepONet), an architecture that incorporates fundamental physics knowledge into the data-driven DeepONet model, is presented in this study. This methodology is exemplified through surrogate modeling of fluid dynamics over a curved backward-facing step, a benchmark problem in computational fluid dynamics. The model was trained on computational fluid dynamics data generated for a range of parameterized geometries. The PC-DeepONet was able to learn the mapping from the parameters describing the geometry to the velocity and pressure fields. While the DeepONet is solely data-driven, the PC-DeepONet imposes the divergence constraint from the continuity equation onto the network. The PC-DeepONet demonstrates higher accuracy than the data-driven baseline, especially when trained on sparse data. Both models attain convergence with a small dataset of 50 samples and require only 50 iterations for convergence, highlighting the efficiency of neural operators in learning the dynamics governed by partial differential equations.
Related papers
- Geometric Operator Learning with Optimal Transport [77.16909146519227]
We propose integrating optimal transport (OT) into operator learning for partial differential equations (PDEs) on complex geometries.<n>For 3D simulations focused on surfaces, our OT-based neural operator embeds the surface geometry into a 2D parameterized latent space.<n> Experiments with Reynolds-averaged Navier-Stokes equations (RANS) on the ShapeNet-Car and DrivAerNet-Car datasets show that our method achieves better accuracy and also reduces computational expenses.
arXiv Detail & Related papers (2025-07-26T21:28:25Z) - Physically Interpretable Representation and Controlled Generation for Turbulence Data [39.42376941186934]
This paper proposes a data-driven approach to encode high-dimensional scientific data into low-dimensional, physically meaningful representations.
We validate our approach using 2D Navier-Stokes simulations of flow past a cylinder over a range of Reynolds numbers.
arXiv Detail & Related papers (2025-01-31T17:51:14Z) - Physics-Informed Latent Neural Operator for Real-time Predictions of Complex Physical Systems [0.0]
We propose PI-Latent-NO, a physics-informed latent neural operator framework that integrates governing physics directly into the learning process.<n>Our architecture features two coupled DeepONets trained end-to-end: a Latent-DeepONet that learns a low-dimensional representation of the solution, and a Reconstruction-DeepONet that maps this latent representation back to the physical space.
arXiv Detail & Related papers (2025-01-14T20:38:30Z) - Graph Neural Networks and Differential Equations: A hybrid approach for data assimilation of fluid flows [0.0]
This study presents a novel hybrid approach that combines Graph Neural Networks (GNNs) with Reynolds-Averaged Navier Stokes (RANS) equations.
The results demonstrate significant improvements in the accuracy of the reconstructed mean flow compared to purely data-driven models.
arXiv Detail & Related papers (2024-11-14T14:31:52Z) - Geometry-Informed Neural Operator for Large-Scale 3D PDEs [76.06115572844882]
We propose the geometry-informed neural operator (GINO) to learn the solution operator of large-scale partial differential equations.
We successfully trained GINO to predict the pressure on car surfaces using only five hundred data points.
arXiv Detail & Related papers (2023-09-01T16:59:21Z) - Training Deep Surrogate Models with Large Scale Online Learning [48.7576911714538]
Deep learning algorithms have emerged as a viable alternative for obtaining fast solutions for PDEs.
Models are usually trained on synthetic data generated by solvers, stored on disk and read back for training.
It proposes an open source online training framework for deep surrogate models.
arXiv Detail & Related papers (2023-06-28T12:02:27Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Forecasting through deep learning and modal decomposition in two-phase
concentric jets [2.362412515574206]
This work aims to improve fuel chamber injectors' performance in turbofan engines.
It requires the development of models that allow real-time prediction and improvement of the fuel/air mixture.
arXiv Detail & Related papers (2022-12-24T12:59:41Z) - Human Trajectory Prediction via Neural Social Physics [63.62824628085961]
Trajectory prediction has been widely pursued in many fields, and many model-based and model-free methods have been explored.
We propose a new method combining both methodologies based on a new Neural Differential Equation model.
Our new model (Neural Social Physics or NSP) is a deep neural network within which we use an explicit physics model with learnable parameters.
arXiv Detail & Related papers (2022-07-21T12:11:18Z) - An advanced spatio-temporal convolutional recurrent neural network for
storm surge predictions [73.4962254843935]
We study the capability of artificial neural network models to emulate storm surge based on the storm track/size/intensity history.
This study presents a neural network model that can predict storm surge, informed by a database of synthetic storm simulations.
arXiv Detail & Related papers (2022-04-18T23:42:18Z) - A Gradient-based Deep Neural Network Model for Simulating Multiphase
Flow in Porous Media [1.5791732557395552]
We describe a gradient-based deep neural network (GDNN) constrained by the physics related to multiphase flow in porous media.
We demonstrate that GDNN can effectively predict the nonlinear patterns of subsurface responses.
arXiv Detail & Related papers (2021-04-30T02:14:00Z) - Echo State Network for two-dimensional turbulent moist Rayleigh-B\'enard
convection [0.0]
We apply an echo state network to approximate the evolution of moist Rayleigh-B'enard convection.
We conclude that our model is capable of learning complex dynamics.
arXiv Detail & Related papers (2021-01-27T11:27:16Z) - An Ode to an ODE [78.97367880223254]
We present a new paradigm for Neural ODE algorithms, called ODEtoODE, where time-dependent parameters of the main flow evolve according to a matrix flow on the group O(d)
This nested system of two flows provides stability and effectiveness of training and provably solves the gradient vanishing-explosion problem.
arXiv Detail & Related papers (2020-06-19T22:05:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.