論文の概要: LLMPerf: GPU Performance Modeling meets Large Language Models
- arxiv url: http://arxiv.org/abs/2503.11244v1
- Date: Fri, 14 Mar 2025 09:52:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-17 13:05:23.436121
- Title: LLMPerf: GPU Performance Modeling meets Large Language Models
- Title(参考訳): LLMPerf: 大規模言語モデルに対応するGPUパフォーマンスモデリング
- Authors: Khoi N. M. Nguyen, Hoang Duy Nguyen Do, Huyen Thao Le, Thanh Tuan Dao,
- Abstract要約: 大規模言語モデル(LLM)は、多様なプログラミング課題に対処する上で、その効果を実証している。
我々の研究は、LLMと性能モデリングの関連性を確立し、LLMを性能推定器として利用する。
我々のモデルは、利用可能なOpenCLプログラムのセットに対して、平均絶対的なパーセンテージエラーを46.1%で達成する。
- 参考スコア(独自算出の注目度): 0.22499166814992436
- License:
- Abstract: Performance modeling, a pivotal domain in program cost analysis, currently relies on manually crafted models constrained by various program and hardware limitations, especially in the intricate landscape of GPGPU. Meanwhile, Large Language Models (LLMs) have demonstrated their effectiveness in addressing diverse programming challenges. Our work establishes a connection between LLMs and performance modeling, employing the LLM as a performance estimator. Through experimental exploration with carefully designed large-scale OpenCL datasets, we highlight the potential capability as well as the main difficulties of using LLMs in handling performance modeling tasks for OpenCL device source programs. As the first study for this line of work, our LLM-based performance model achieves a mean absolute percentage error of $24.25\%$ for a large-scale generated validation set. On a set of publicly available OpenCL programs, our model achieves a mean absolute percentage error of $46.1\%$.
- Abstract(参考訳): プログラムコスト分析における重要な領域であるパフォーマンスモデリングは、現在、GPGPUの複雑な状況において、様々なプログラムとハードウェアの制限によって制約された手作業によるモデルに依存している。
一方、LLM(Large Language Models)は、様々なプログラミング課題に対処する上で、その効果を実証している。
我々の研究は、LLMと性能モデリングの関連性を確立し、LLMを性能推定器として利用する。
大規模なOpenCLデータセットを慎重に設計した実験を通じて、OpenCLデバイスソースプログラムのパフォーマンスモデリングタスクを扱う上で、LLMを使うことの潜在的な可能性と、主な難しさを強調した。
この一連の研究の最初の研究として、我々のLLMに基づく性能モデルは、大規模に生成された検証セットに対して平均絶対的なパーセンテージ誤差を24.25セントで達成した。
公開されているOpenCLプログラムのセットでは、平均絶対パーセンテージ誤差は46.1\%$である。
関連論文リスト
- LLM-Inference-Bench: Inference Benchmarking of Large Language Models on AI Accelerators [1.1028525384019312]
LLM(Large Language Models)は、複数のドメインにまたがる画期的な進歩を推進し、テキスト生成アプリケーションに一般的に使われている。
LLMのハードウェア推論性能を評価するための総合ベンチマークスイートであるLLM-Inference-Benchを紹介する。
ベンチマークの結果、さまざまなモデル、ハードウェアプラットフォーム、推論フレームワークの長所と短所が明らかになりました。
論文 参考訳(メタデータ) (2024-10-31T18:34:59Z) - LLaVA-KD: A Framework of Distilling Multimodal Large Language Models [70.19607283302712]
本稿では,l-MLLMからs-MLLMへ知識を伝達する新しいフレームワークを提案する。
具体的には,l-MLLMとs-MLLMの視覚的テキスト出力分布のばらつきを最小限に抑えるために,MDist(Multimodal Distillation)を導入する。
また,S-MLLMの可能性を完全に活用するための3段階学習手法を提案する。
論文 参考訳(メタデータ) (2024-10-21T17:41:28Z) - Performance Law of Large Language Models [58.32539851241063]
性能法則は、LLMアーキテクチャの選択と計算資源の効率的な割り当てを導くために用いられる。
性能法則は、LLMアーキテクチャの選択と計算資源の効率的な割り当てを広範な実験なしで導くのに利用できる。
論文 参考訳(メタデータ) (2024-08-19T11:09:12Z) - Understanding the Performance and Estimating the Cost of LLM Fine-Tuning [9.751868268608675]
コスト効率の良い特定のタスクのための微調整大型言語モデル(LLM)。
本稿では,Sparse Mixture of Experts (MoE)をベースとしたLLMファインチューニングを特徴付ける。
また,クラウド上でのLCM微調整のコストを推定するための解析モデルを開発し,検証する。
論文 参考訳(メタデータ) (2024-08-08T16:26:07Z) - SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
大規模言語モデル(LLM)は、適切な自然言語プロンプトを提供する際に、多様なタスクを解決するという約束を持っている。
学生LLMからタスク固有の入出力ペアを合成する多段階メカニズムであるSELF-GUIDEを提案する。
ベンチマークの指標から,分類タスクに約15%,生成タスクに18%の絶対的な改善を報告した。
論文 参考訳(メタデータ) (2024-07-16T04:41:58Z) - Characterization of Large Language Model Development in the Datacenter [55.9909258342639]
大きな言語モデル(LLM)は、いくつかの変換タスクにまたがって素晴らしいパフォーマンスを示している。
しかし,大規模クラスタ資源を効率よく利用してLCMを開発することは容易ではない。
我々は,GPUデータセンタAcmeから収集した6ヶ月のLDM開発ワークロードの詳細な評価を行った。
論文 参考訳(メタデータ) (2024-03-12T13:31:14Z) - Knowledge Fusion of Large Language Models [73.28202188100646]
本稿では,大規模言語モデル(LLM)における知識融合の概念を紹介する。
我々は、それらの集合的知識と独特な強みを外部化し、それによってターゲットモデルの能力が、どのソースLLMよりも高められるようにします。
この結果から,LLMの融合により,推論やコモンセンス,コード生成など,対象モデルの性能が向上することが確認された。
論文 参考訳(メタデータ) (2024-01-19T05:02:46Z) - QIGen: Generating Efficient Kernels for Quantized Inference on Large
Language Models [22.055655390093722]
本稿では,LLaMA や OPT などの LLM 上の量子化生成推論をオフザシェルフ CPU 上で支援するための自動コード生成手法を提案する。
LLaMA モデルに対する CPU ベースの推論の結果から,我々のアプローチは,優れたオープンソースソリューションと比較して,高い性能と高い精度をもたらす可能性が示唆された。
論文 参考訳(メタデータ) (2023-07-07T17:46:08Z) - LLM-Pruner: On the Structural Pruning of Large Language Models [65.02607075556742]
大規模言語モデル(LLM)は、言語理解と生成において顕著な能力を示している。
タスク非依存であり、元のトレーニングデータセットへの依存を最小限に抑えるという2つの制約の範囲内でLLMの圧縮に取り組む。
LLM-Prunerという名前のこの手法は、非臨界結合構造を選択的に除去する構造プルーニングを採用する。
論文 参考訳(メタデータ) (2023-05-19T12:10:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。