論文の概要: OPTIMUS: Predicting Multivariate Outcomes in Alzheimer's Disease Using Multi-modal Data amidst Missing Values
- arxiv url: http://arxiv.org/abs/2503.11282v1
- Date: Fri, 14 Mar 2025 10:40:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-17 13:05:38.266518
- Title: OPTIMUS: Predicting Multivariate Outcomes in Alzheimer's Disease Using Multi-modal Data amidst Missing Values
- Title(参考訳): OPTIMUS:欠測値中の多変量データを用いたアルツハイマー病の多変量予後予測
- Authors: Christelle Schneuwly Diaz, Duy-Thanh Vu, Julien Bodelet, Duy-Cat Can, Guillaume Blanc, Haiting Jiang, Lin Yao, Guiseppe Pantaleo, ADNI, Oliver Y. Chén,
- Abstract要約: アルツハイマー病(英語: Alzheimer's disease、AD)は、神経、遺伝、およびプロテオミクスに関連する疾患である。
最近の"deeper"機械学習アプローチでは、予測精度の向上が期待できるが、これらのモデルの生物学的関連性はさらにグラフ化する必要がある。
我々の研究は、予測的かつ生物学的に説明可能な機械学習フレームワークを構築し、マルチモーダルバイオマーカーを明らかにする可能性を実証している。
- 参考スコア(独自算出の注目度): 2.448860365367304
- License:
- Abstract: Alzheimer's disease, a neurodegenerative disorder, is associated with neural, genetic, and proteomic factors while affecting multiple cognitive and behavioral faculties. Traditional AD prediction largely focuses on univariate disease outcomes, such as disease stages and severity. Multimodal data encode broader disease information than a single modality and may, therefore, improve disease prediction; but they often contain missing values. Recent "deeper" machine learning approaches show promise in improving prediction accuracy, yet the biological relevance of these models needs to be further charted. Integrating missing data analysis, predictive modeling, multimodal data analysis, and explainable AI, we propose OPTIMUS, a predictive, modular, and explainable machine learning framework, to unveil the many-to-many predictive pathways between multimodal input data and multivariate disease outcomes amidst missing values. OPTIMUS first applies modality-specific imputation to uncover data from each modality while optimizing overall prediction accuracy. It then maps multimodal biomarkers to multivariate outcomes using machine-learning and extracts biomarkers respectively predictive of each outcome. Finally, OPTIMUS incorporates XAI to explain the identified multimodal biomarkers. Using data from 346 cognitively normal subjects, 608 persons with mild cognitive impairment, and 251 AD patients, OPTIMUS identifies neural and transcriptomic signatures that jointly but differentially predict multivariate outcomes related to executive function, language, memory, and visuospatial function. Our work demonstrates the potential of building a predictive and biologically explainable machine-learning framework to uncover multimodal biomarkers that capture disease profiles across varying cognitive landscapes. The results improve our understanding of the complex many-to-many pathways in AD.
- Abstract(参考訳): アルツハイマー病(英: Alzheimer's disease)は、神経変性疾患である。
従来のAD予測は主に、病気のステージや重症度のような単変量疾患の結果に焦点を当てている。
マルチモーダルデータは単一のモダリティよりも広い病気情報をエンコードするので、病気の予測を改善することができるが、しばしば欠落する値を含んでいる。
最近の"deeper"機械学習アプローチでは、予測精度の向上が期待できるが、これらのモデルの生物学的関連性はさらにグラフ化する必要がある。
欠落したデータ分析,予測モデリング,マルチモーダルデータ解析,説明可能なAIを統合して,マルチモーダル入力データと多変量病結果の間の多変量予測経路を明らかにするために,予測的,モジュール的,説明可能な機械学習フレームワークであるOPTIMUSを提案する。
OPTIMUSはまず、全予測精度を最適化しながら、各モーダリティからデータを明らかにするために、モーダリティ比の計算を適用した。
次に、機械学習を用いてマルチモーダルなバイオマーカーを多変量結果にマッピングし、それぞれの結果を予測するバイオマーカーを抽出する。
最後に、OPTIMUSはXAIを組み込んで、同定されたマルチモーダルバイオマーカーを説明する。
認知正常者346名, 軽度認知障害者608名, およびAD患者251名を用いて, OPTIMUSは, 重心機能, 言語, 記憶, 空間機能に関連する多変量の結果を共同で予測する神経学的および転写学的シグネチャを同定した。
我々の研究は、予測的で生物学的に説明可能な機械学習フレームワークを構築して、さまざまな認知環境における疾患のプロファイルを捉えるマルチモーダルバイオマーカーを明らかにする可能性を実証している。
その結果,ADの複雑な多対多経路の理解が向上した。
関連論文リスト
- Continually Evolved Multimodal Foundation Models for Cancer Prognosis [50.43145292874533]
がん予後は、患者の予後と生存率を予測する重要なタスクである。
これまでの研究では、臨床ノート、医療画像、ゲノムデータなどの多様なデータモダリティを統合し、補完的な情報を活用している。
既存のアプローチには2つの大きな制限がある。まず、各病院の患者記録など、各種のトレーニングに新しく到着したデータを組み込むことに苦慮する。
第二に、ほとんどのマルチモーダル統合手法は単純化された結合やタスク固有のパイプラインに依存しており、モダリティ間の複雑な相互依存を捉えることができない。
論文 参考訳(メタデータ) (2025-01-30T06:49:57Z) - UNICORN: A Deep Learning Model for Integrating Multi-Stain Data in Histopathology [2.9389205138207277]
UNICORNは動脈硬化の重症度予測のための多段階組織学を処理できるマルチモーダルトランスフォーマーである。
このアーキテクチャは、2段階のエンドツーエンドのトレーニング可能なモデルと、トランスフォーマーの自己保持ブロックを利用する特殊なモジュールから構成される。
UNICORNは0.67の分類精度を達成し、他の最先端モデルを上回った。
論文 参考訳(メタデータ) (2024-09-26T12:13:52Z) - Diagnosing Alzheimer's Disease using Early-Late Multimodal Data Fusion
with Jacobian Maps [1.5501208213584152]
アルツハイマー病(英語: Alzheimer's disease、AD)は、老化に影響を及ぼす神経変性疾患である。
本稿では,自動特徴抽出とランダム森林のための畳み込みニューラルネットワークを利用する,効率的な早期融合(ELF)手法を提案する。
脳の容積の微妙な変化を検出するという課題に対処するために、画像をヤコビ領域(JD)に変換する。
論文 参考訳(メタデータ) (2023-10-25T19:02:57Z) - Incomplete Multimodal Learning for Complex Brain Disorders Prediction [65.95783479249745]
本稿では,変換器と生成対向ネットワークを用いた不完全なマルチモーダルデータ統合手法を提案する。
アルツハイマー病神経画像イニシアチブコホートを用いたマルチモーダルイメージングによる認知変性と疾患予後の予測に本手法を適用した。
論文 参考訳(メタデータ) (2023-05-25T16:29:16Z) - CLCLSA: Cross-omics Linked embedding with Contrastive Learning and Self
Attention for multi-omics integration with incomplete multi-omics data [47.2764293508916]
不均一・高次元マルチオミクスデータの統合は、遺伝データの理解においてますます重要になっている。
マルチオミクスデータ統合を行う際に直面する障害のひとつは、機器の感度とコストによる未ペアリングマルチオミクスデータの存在である。
クロスオミクスを用いたマルチオミクス統合のための深層学習手法を提案する。
論文 参考訳(メタデータ) (2023-04-12T00:22:18Z) - Tensor-Based Multi-Modality Feature Selection and Regression for
Alzheimer's Disease Diagnosis [25.958167380664083]
アルツハイマー病(AD)と軽度認知障害(MCI)の診断・バイオマーカー同定のための新しいテンソルベース多モード特徴選択と回帰法を提案する。
3つの画像モダリティを用いたADNIデータ解析における本手法の実用的利点について述べる。
論文 参考訳(メタデータ) (2022-09-23T02:17:27Z) - Multimodal Representations Learning and Adversarial Hypergraph Fusion
for Early Alzheimer's Disease Prediction [30.99183477161096]
本稿では,アルツハイマー病診断のための新しい表現学習と逆向きハイパーグラフ融合フレームワークを提案する。
本モデルは、他の関連モデルと比較して、アルツハイマー病の検出において優れた性能を発揮する。
論文 参考訳(メタデータ) (2021-07-21T08:08:05Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
診断によって誘導される画像データと遺伝データを統合し、解釈可能なバイオマーカーを提供する新しいディープニューラルネットワークアーキテクチャを提案する。
2つの機能的MRI(fMRI)パラダイムとSingle Nucleotide Polymorphism (SNP)データを含む統合失調症の集団研究で本モデルを評価した。
論文 参考訳(メタデータ) (2021-01-27T19:28:04Z) - Multimodal Gait Recognition for Neurodegenerative Diseases [38.06704951209703]
3つの神経変性疾患の歩容差を学習するための新しいハイブリッドモデルを提案する。
新しい相関メモリニューラルネットワークアーキテクチャは、時間的特徴を抽出するために設計されている。
いくつかの最先端技術と比較して,提案手法はより正確な分類結果を示す。
論文 参考訳(メタデータ) (2021-01-07T10:17:11Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
本研究は, 類似患者のサブグループを同定し, 数発の疾患のサブタイプ予測問題に焦点を当てた。
新しいモデルを開発するためにメタラーニング技術を導入し、関連する臨床課題から共通の経験や知識を抽出する。
我々の新しいモデルは、単純だが効果的なメタ学習マシンであるPrototypeal Networkと呼ばれる、慎重に設計されたメタラーナーに基づいて構築されている。
論文 参考訳(メタデータ) (2020-09-02T02:50:30Z) - M2Net: Multi-modal Multi-channel Network for Overall Survival Time
Prediction of Brain Tumor Patients [151.4352001822956]
生存時間(OS)の早期かつ正確な予測は、脳腫瘍患者に対するより良い治療計画を得るのに役立つ。
既存の予測手法は、磁気共鳴(MR)ボリュームの局所的な病変領域における放射能特性に依存している。
我々は,マルチモーダルマルチチャネルネットワーク(M2Net)のエンドツーエンドOS時間予測モデルを提案する。
論文 参考訳(メタデータ) (2020-06-01T05:21:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。