Brain Effective Connectivity Estimation via Fourier Spatiotemporal Attention
- URL: http://arxiv.org/abs/2503.11283v1
- Date: Fri, 14 Mar 2025 10:41:27 GMT
- Title: Brain Effective Connectivity Estimation via Fourier Spatiotemporal Attention
- Authors: Wen Xiong, Jinduo Liu, Junzhong Ji, Fenglong Ma,
- Abstract summary: We propose a brain effective connectivity estimation method based on temporal and spatial attention (FSTA-EC)<n>FSTA-EC combines Fourier attention and attention to simultaneously capture inter-series (temporal) dynamics and intra-series (temporal) dependencies from fMRI data.<n>The experimental results on simulated and real-resting-state fMRI datasets demonstrate that the proposed method exhibits superior performance when compared to state-of-the-art methods.
- Score: 28.16273684461348
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Estimating brain effective connectivity (EC) from functional magnetic resonance imaging (fMRI) data can aid in comprehending the neural mechanisms underlying human behavior and cognition, providing a foundation for disease diagnosis. However, current spatiotemporal attention modules handle temporal and spatial attention separately, extracting temporal and spatial features either sequentially or in parallel. These approaches overlook the inherent spatiotemporal correlations present in real world fMRI data. Additionally, the presence of noise in fMRI data further limits the performance of existing methods. In this paper, we propose a novel brain effective connectivity estimation method based on Fourier spatiotemporal attention (FSTA-EC), which combines Fourier attention and spatiotemporal attention to simultaneously capture inter-series (spatial) dynamics and intra-series (temporal) dependencies from high-noise fMRI data. Specifically, Fourier attention is designed to convert the high-noise fMRI data to frequency domain, and map the denoised fMRI data back to physical domain, and spatiotemporal attention is crafted to simultaneously learn spatiotemporal dynamics. Furthermore, through a series of proofs, we demonstrate that incorporating learnable filter into fast Fourier transform and inverse fast Fourier transform processes is mathematically equivalent to performing cyclic convolution. The experimental results on simulated and real-resting-state fMRI datasets demonstrate that the proposed method exhibits superior performance when compared to state-of-the-art methods.
Related papers
- Classification of Mild Cognitive Impairment Based on Dynamic Functional Connectivity Using Spatio-Temporal Transformer [30.044545011553172]
We propose a novel framework that jointly learns the embedding of both spatial and temporal information within dFC.<n> Experimental results on 345 subjects with 570 scans from the Alzheimers Disease Neuroimaging Initiative (ADNI) demonstrate the superiority of our proposed method.
arXiv Detail & Related papers (2025-01-27T18:20:33Z) - ContextMRI: Enhancing Compressed Sensing MRI through Metadata Conditioning [51.26601171361753]
We propose ContextMRI, a text-conditioned diffusion model for MRI that integrates granular metadata into the reconstruction process.
We show that increasing the fidelity of metadata, ranging from slice location and contrast to patient age, sex, and pathology, systematically boosts reconstruction performance.
arXiv Detail & Related papers (2025-01-08T05:15:43Z) - MHSA: A Multi-scale Hypergraph Network for Mild Cognitive Impairment Detection via Synchronous and Attentive Fusion [4.526574526136158]
A Multi-scale Hypergraph Network for MCI Detection via Synchronous and Attentive Fusion is presented.<n>Our approach employs the Phase-Locking Value (PLV) to calculate the phase synchronization relationship in the spectrum domain of regions of interest.<n>We structure the PLV coefficients dynamically adjust strategy, and the dynamic hypergraph is modelled based on a comprehensive temporal-spectrum fusion matrix.
arXiv Detail & Related papers (2024-12-11T02:59:57Z) - Copula-Linked Parallel ICA: A Method for Coupling Structural and Functional MRI brain Networks [0.5277756703318045]
Prior studies fusing functional MRI (fMRI) and structural MRI (sMRI) have shown the benefits of this approach.
We developed a novel fusion method, by combining deep learning frameworks, copulas and independent component analysis (ICA), named copula linked parallel ICA (CLiP-ICA)
CLiP-ICA effectively captures both strongly and weakly linked sMRI and fMRI networks, including the cerebellum, sensorimotor, visual, cognitive control, and default mode networks.
arXiv Detail & Related papers (2024-10-14T01:35:41Z) - Accelerated Multi-Contrast MRI Reconstruction via Frequency and Spatial Mutual Learning [50.74383395813782]
We propose a novel Frequency and Spatial Mutual Learning Network (FSMNet) to explore global dependencies across different modalities.
The proposed FSMNet achieves state-of-the-art performance for the Multi-Contrast MR Reconstruction task with different acceleration factors.
arXiv Detail & Related papers (2024-09-21T12:02:47Z) - Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation [56.34634121544929]
In this study, we first construct the brain-effective network via the dynamic causal model.
We then introduce an interpretable graph learning framework termed Spatio-Temporal Embedding ODE (STE-ODE)
This framework incorporates specifically designed directed node embedding layers, aiming at capturing the dynamic interplay between structural and effective networks.
arXiv Detail & Related papers (2024-05-21T20:37:07Z) - NeuroPictor: Refining fMRI-to-Image Reconstruction via Multi-individual Pretraining and Multi-level Modulation [55.51412454263856]
This paper proposes to directly modulate the generation process of diffusion models using fMRI signals.
By training with about 67,000 fMRI-image pairs from various individuals, our model enjoys superior fMRI-to-image decoding capacity.
arXiv Detail & Related papers (2024-03-27T02:42:52Z) - A Compact Implicit Neural Representation for Efficient Storage of
Massive 4D Functional Magnetic Resonance Imaging [14.493622422645053]
fMRI compressing poses unique challenges due to its intricate temporal dynamics, low signal-to-noise ratio, and complicated underlying redundancies.
This paper reports a novel compression paradigm specifically tailored for fMRI data based on Implicit Neural Representation (INR)
arXiv Detail & Related papers (2023-11-30T05:54:37Z) - Brain Imaging-to-Graph Generation using Adversarial Hierarchical Diffusion Models for MCI Causality Analysis [44.45598796591008]
Brain imaging-to-graph generation (BIGG) framework is proposed to map functional magnetic resonance imaging (fMRI) into effective connectivity for mild cognitive impairment analysis.
The hierarchical transformers in the generator are designed to estimate the noise at multiple scales.
Evaluations of the ADNI dataset demonstrate the feasibility and efficacy of the proposed model.
arXiv Detail & Related papers (2023-05-18T06:54:56Z) - fMRI from EEG is only Deep Learning away: the use of interpretable DL to
unravel EEG-fMRI relationships [68.8204255655161]
We present an interpretable domain grounded solution to recover the activity of several subcortical regions from multichannel EEG data.
We recover individual spatial and time-frequency patterns of scalp EEG predictive of the hemodynamic signal in the subcortical nuclei.
arXiv Detail & Related papers (2022-10-23T15:11:37Z) - DynDepNet: Learning Time-Varying Dependency Structures from fMRI Data
via Dynamic Graph Structure Learning [58.94034282469377]
We propose DynDepNet, a novel method for learning the optimal time-varying dependency structure of fMRI data induced by downstream prediction tasks.
Experiments on real-world fMRI datasets, for the task of sex classification, demonstrate that DynDepNet achieves state-of-the-art results.
arXiv Detail & Related papers (2022-09-27T16:32:11Z) - Spatio-temporally separable non-linear latent factor learning: an
application to somatomotor cortex fMRI data [0.0]
Models of fMRI data that can perform whole-brain discovery of latent factors are understudied.
New methods for efficient spatial weight-sharing are critical to deal with the high dimensionality of the data and the presence of noise.
Our approach is evaluated on data with multiple motor sub-tasks to assess whether the model captures disentangled latent factors that correspond to each sub-task.
arXiv Detail & Related papers (2022-05-26T21:30:22Z) - 4D Spatio-Temporal Deep Learning with 4D fMRI Data for Autism Spectrum
Disorder Classification [69.62333053044712]
We propose a 4D convolutional deep learning approach for ASD classification where we jointly learn from spatial and temporal data.
We employ 4D neural networks and convolutional-recurrent models which outperform a previous approach with an F1-score of 0.71 compared to an F1-score of 0.65.
arXiv Detail & Related papers (2020-04-21T17:19:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.