論文の概要: Self-Supervised Pretraining for Fine-Grained Plankton Recognition
- arxiv url: http://arxiv.org/abs/2503.11341v1
- Date: Fri, 14 Mar 2025 12:15:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-17 13:07:08.917295
- Title: Self-Supervised Pretraining for Fine-Grained Plankton Recognition
- Title(参考訳): 微粒プランクトン認識のための自己教師付き事前訓練
- Authors: Joona Kareinen, Tuomas Eerola, Kaisa Kraft, Lasse Lensu, Sanna Suikkanen, Heikki Kälviäinen,
- Abstract要約: プランクトン認識は、海洋食物網や炭素捕獲においてプランクトンが重要な役割を担っているため、重要なコンピュータビジョン問題である。
本研究では,プランクトン認識のための大規模自己教師型プレトレーニングについて検討する。
- 参考スコア(独自算出の注目度): 0.11309478649967238
- License:
- Abstract: Plankton recognition is an important computer vision problem due to plankton's essential role in ocean food webs and carbon capture, highlighting the need for species-level monitoring. However, this task is challenging due to its fine-grained nature and dataset shifts caused by different imaging instruments and varying species distributions. As new plankton image datasets are collected at an increasing pace, there is a need for general plankton recognition models that require minimal expert effort for data labeling. In this work, we study large-scale self-supervised pretraining for fine-grained plankton recognition. We first employ masked autoencoding and a large volume of diverse plankton image data to pretrain a general-purpose plankton image encoder. Then we utilize fine-tuning to obtain accurate plankton recognition models for new datasets with a very limited number of labeled training images. Our experiments show that self-supervised pretraining with diverse plankton data clearly increases plankton recognition accuracy compared to standard ImageNet pretraining when the amount of training data is limited. Moreover, the accuracy can be further improved when unlabeled target data is available and utilized during the pretraining.
- Abstract(参考訳): プランクトン認識は、海洋食物網や炭素捕獲においてプランクトンが重要な役割を担っているため、コンピュータビジョンの重要な問題であり、種レベルのモニタリングの必要性を強調している。
しかし、この課題は、様々なイメージング機器と様々な種の分布によって引き起こされる、きめ細かい性質とデータセットの変化のため、困難である。
新しいプランクトン画像データセットが増加するペースで収集されるため、データラベリングに最小限の専門的努力を必要とする一般的なプランクトン認識モデルが必要である。
本研究では,プランクトン認識のための大規模自己教師型プレトレーニングについて検討する。
まずマスク付きオートエンコーディングと多種多様なプランクトン画像データを用いて汎用プランクトン画像エンコーダを事前訓練する。
そして、微調整を利用して、ラベル付きトレーニング画像の少ない新しいデータセットの正確なプランクトン認識モデルを得る。
実験の結果,多種多様なプランクトンデータを用いた自己教師型プレトレーニングは,訓練データの量に制限がある場合に比べて,プランクトン認識精度が向上することがわかった。
さらに、未ラベルの目標データが利用可能で、事前訓練中に利用される場合には、精度をさらに向上することができる。
関連論文リスト
- MPT: A Large-scale Multi-Phytoplankton Tracking Benchmark [36.37530623015916]
本稿では,様々な背景情報と観測時の動作変化を網羅するベンチマークデータセットであるMultiple Phytoplankton Tracking (MPT)を提案する。
このデータセットには27種類の植物プランクトンと動物プランクトンが含まれ、14種類の背景があり、多様な複雑な水中環境をシミュレートしている。
標準特徴抽出器の出力残量を予測するための追加特徴抽出器を導入し、抽出器の異なる層の特徴に基づいて多スケールのフレーム間類似性を計算した。
論文 参考訳(メタデータ) (2024-10-22T04:57:28Z) - Rethinking Transformers Pre-training for Multi-Spectral Satellite
Imagery [78.43828998065071]
教師なし学習の最近の進歩は、下流タスクにおける有望な結果を達成するための大きな視覚モデルの可能性を示している。
このような事前学習技術は、大量の未学習データが利用可能であることから、リモートセンシング領域でも最近研究されている。
本稿では,マルチモーダルで効果的に活用されるマルチスケール情報の事前学習と活用について述べる。
論文 参考訳(メタデータ) (2024-03-08T16:18:04Z) - Efficient Unsupervised Learning for Plankton Images [12.447149371717]
水生生態系の保全には,シチューにおけるプランクトン群集のモニタリングが不可欠である。
このようなデータを分類するための機械学習アルゴリズムの採用は、手動アノテーションの大幅なコストに影響される可能性がある。
プランクトン微生物の正確な分類を行うために,効率的な教師なし学習パイプラインを提案する。
論文 参考訳(メタデータ) (2022-09-14T15:33:16Z) - Towards Generating Large Synthetic Phytoplankton Datasets for Efficient
Monitoring of Harmful Algal Blooms [77.25251419910205]
有害な藻類(HAB)は養殖農場で重大な魚死を引き起こす。
現在、有害藻や他の植物プランクトンを列挙する標準的な方法は、顕微鏡でそれらを手動で観察し数えることである。
合成画像の生成にはGAN(Generative Adversarial Networks)を用いる。
論文 参考訳(メタデータ) (2022-08-03T20:15:55Z) - Self-Supervised Learning as a Means To Reduce the Need for Labeled Data
in Medical Image Analysis [64.4093648042484]
胸部X線画像のデータセットとバウンディングボックスラベルを用いて,13種類の異常の分類を行った。
ラベル付きデータの平均精度と精度を60%に抑えることで,完全教師付きモデルと同等の性能が得られることを示す。
論文 参考訳(メタデータ) (2022-06-01T09:20:30Z) - Deep Learning Classification of Lake Zooplankton [0.0]
湖沼プランクトンの同定のために開発された深層学習モデルについて述べる。
この目的のために,我々は17900年の動物園プランクトンと大型植物プランクトンコロニーの画像に対して35のクラスに注釈を付けた。
最良モデルは転送学習とアンサンブルに基づいて,98%の精度と93%のF1スコアでプランクトン画像を分類した。
論文 参考訳(メタデータ) (2021-08-11T14:57:43Z) - Visual Distant Supervision for Scene Graph Generation [66.10579690929623]
シーングラフモデルは通常、大量のラベル付きデータを人間のアノテーションで教師付き学習する必要がある。
本研究では,人間ラベルデータを用いずにシーングラフモデルを訓練できる視覚関係学習の新しいパラダイムである視覚遠方監視を提案する。
包括的な実験結果から、我々の遠隔監視モデルは、弱い監督と半監督のベースラインよりも優れています。
論文 参考訳(メタデータ) (2021-03-29T06:35:24Z) - Deep Low-Shot Learning for Biological Image Classification and
Visualization from Limited Training Samples [52.549928980694695]
In situ hybridization (ISH) gene expression pattern image from the same developmental stage。
正確な段階のトレーニングデータをラベル付けするのは、生物学者にとっても非常に時間がかかる。
限られた訓練画像を用いてISH画像を正確に分類する2段階の低ショット学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-10-20T06:06:06Z) - Automatic image-based identification and biomass estimation of
invertebrates [70.08255822611812]
時間を要する分類と分類は、どれだけの昆虫を処理できるかに強い制限を課す。
我々は、人間の専門家による分類と識別の標準的な手動アプローチを、自動画像ベース技術に置き換えることを提案する。
分類タスクには最先端のResnet-50とInceptionV3 CNNを使用する。
論文 参考訳(メタデータ) (2020-02-05T21:38:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。