A Review of DeepSeek Models' Key Innovative Techniques
- URL: http://arxiv.org/abs/2503.11486v1
- Date: Fri, 14 Mar 2025 15:11:29 GMT
- Title: A Review of DeepSeek Models' Key Innovative Techniques
- Authors: Chengen Wang, Murat Kantarcioglu,
- Abstract summary: DeepSeek-V3 and DeepSeek-R1 are leading open-source Large Language Models.<n>We review the core techniques driving the remarkable effectiveness and efficiency of these models.
- Score: 10.977907906989342
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: DeepSeek-V3 and DeepSeek-R1 are leading open-source Large Language Models (LLMs) for general-purpose tasks and reasoning, achieving performance comparable to state-of-the-art closed-source models from companies like OpenAI and Anthropic -- while requiring only a fraction of their training costs. Understanding the key innovative techniques behind DeepSeek's success is crucial for advancing LLM research. In this paper, we review the core techniques driving the remarkable effectiveness and efficiency of these models, including refinements to the transformer architecture, innovations such as Multi-Head Latent Attention and Mixture of Experts, Multi-Token Prediction, the co-design of algorithms, frameworks, and hardware, the Group Relative Policy Optimization algorithm, post-training with pure reinforcement learning and iterative training alternating between supervised fine-tuning and reinforcement learning. Additionally, we identify several open questions and highlight potential research opportunities in this rapidly advancing field.
Related papers
- SRPO: A Cross-Domain Implementation of Large-Scale Reinforcement Learning on LLM [18.275547804539016]
Two-Staged history-Resampling Policy optimization surpasses the performance of DeepSeek-R1-Zero-32B on the AIME24 and LiveCodeBench benchmarks.
We introduce two key methodological innovations: (1) a two-stage cross-domain training paradigm designed to balance the development of mathematical reasoning and coding proficiency, and (2) History Resampling (HR), a technique to address ineffective samples.
arXiv Detail & Related papers (2025-04-19T13:06:03Z) - Will Pre-Training Ever End? A First Step Toward Next-Generation Foundation MLLMs via Self-Improving Systematic Cognition [86.21199607040147]
Self-Improving cognition (SIcog) is a self-learning framework for constructing next-generation foundation language models.
We introduce Chain-of-Description, a step-by-step visual understanding method, and integrate structured chain-of-thought (CoT) reasoning to support in-depth multimodal reasoning.
Extensive experiments demonstrate that SIcog produces next-generation foundation MLLMs with substantially improved multimodal cognition.
arXiv Detail & Related papers (2025-03-16T00:25:13Z) - On Accelerating Edge AI: Optimizing Resource-Constrained Environments [1.7355861031903428]
Resource-constrained edge deployments demand AI solutions that balance high performance with stringent compute, memory, and energy limitations.
We present a comprehensive overview of the primary strategies for accelerating deep learning models under such constraints.
arXiv Detail & Related papers (2025-01-25T01:37:03Z) - Scaling of Search and Learning: A Roadmap to Reproduce o1 from Reinforcement Learning Perspective [77.94874338927492]
OpenAI has claimed that the main techinique behinds o1 is the reinforcement learning.
This paper analyzes the roadmap to achieving o1 from the perspective of reinforcement learning.
arXiv Detail & Related papers (2024-12-18T18:24:47Z) - A Survey on Inference Optimization Techniques for Mixture of Experts Models [50.40325411764262]
Large-scale Mixture of Experts (MoE) models offer enhanced model capacity and computational efficiency through conditional computation.<n> deploying and running inference on these models presents significant challenges in computational resources, latency, and energy efficiency.<n>This survey analyzes optimization techniques for MoE models across the entire system stack.
arXiv Detail & Related papers (2024-12-18T14:11:15Z) - OpenR: An Open Source Framework for Advanced Reasoning with Large Language Models [61.14336781917986]
We introduce OpenR, an open-source framework for enhancing the reasoning capabilities of large language models (LLMs)
OpenR unifies data acquisition, reinforcement learning training, and non-autoregressive decoding into a cohesive software platform.
Our work is the first to provide an open-source framework that explores the core techniques of OpenAI's o1 model with reinforcement learning.
arXiv Detail & Related papers (2024-10-12T23:42:16Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
We present a comprehensive study on the integration of machine learning (ML) techniques into Huawei Cloud's OptVerse AI solver.
We showcase our methods for generating complex SAT and MILP instances utilizing generative models that mirror multifaceted structures of real-world problem.
We detail the incorporation of state-of-the-art parameter tuning algorithms which markedly elevate solver performance.
arXiv Detail & Related papers (2024-01-11T15:02:15Z) - The Efficiency Spectrum of Large Language Models: An Algorithmic Survey [54.19942426544731]
The rapid growth of Large Language Models (LLMs) has been a driving force in transforming various domains.
This paper examines the multi-faceted dimensions of efficiency essential for the end-to-end algorithmic development of LLMs.
arXiv Detail & Related papers (2023-12-01T16:00:25Z) - Unleashing the potential of prompt engineering in Large Language Models: a comprehensive review [1.6006550105523192]
Review explores the pivotal role of prompt engineering in unleashing the capabilities of Large Language Models (LLMs)
Examines both foundational and advanced methodologies of prompt engineering, including techniques such as self-consistency, chain-of-thought, and generated knowledge.
Review also reflects the essential role of prompt engineering in advancing AI capabilities, providing a structured framework for future research and application.
arXiv Detail & Related papers (2023-10-23T09:15:18Z) - RTDK-BO: High Dimensional Bayesian Optimization with Reinforced
Transformer Deep kernels [39.53062980223013]
We combine recent developments in Deep Kernel Learning (DKL) and attention-based Transformer models to improve the modeling powers of GP surrogates with meta-learning.
We propose a novel method for improving meta-learning BO surrogates by incorporating attention mechanisms into DKL.
We combine this Transformer Deep Kernel with a learned acquisition function trained with continuous Soft Actor-Critic Reinforcement Learning to aid in exploration.
arXiv Detail & Related papers (2023-10-05T21:37:20Z) - Hyper-Parameter Optimization: A Review of Algorithms and Applications [14.524227656147968]
This paper provides a review of the most essential topics on automated hyper- parameter optimization (HPO)
The research focuses on major optimization algorithms and their applicability, covering their efficiency and accuracy especially for deep learning networks.
The paper concludes with problems that exist when HPO is applied to deep learning, a comparison between optimization algorithms, and prominent approaches for model evaluation with limited computational resources.
arXiv Detail & Related papers (2020-03-12T10:12:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.