Cloud2BIM: An open-source automatic pipeline for efficient conversion of large-scale point clouds into IFC format
- URL: http://arxiv.org/abs/2503.11498v2
- Date: Tue, 18 Mar 2025 21:53:55 GMT
- Title: Cloud2BIM: An open-source automatic pipeline for efficient conversion of large-scale point clouds into IFC format
- Authors: Slávek Zbirovský, Václav Nežerka,
- Abstract summary: This paper presents Cloud2BIM, an open-source software tool designed to automate the conversion of point clouds into BIM models.<n>Unlike existing tools, it avoids computationally- and calibration-intensive techniques such as RANSAC, supports non-orthogonal geometries, and provides unprecedented processing speed-achieving results up to seven times faster than fastest competing solutions.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Building Information Modeling (BIM) is an essential component in the sustainable reconstruction and revitalization of ageing structures. However, model creation usually relies on laborious manual transformation of the unstructured point cloud data provided by laser scans or photogrammetry. This paper presents Cloud2BIM, an open-source software tool designed to automate the conversion of point clouds into BIM models compliant with the Industry Foundation Classes (IFC) standard. Cloud2BIM integrates advanced algorithms for wall and slab segmentation, opening detection, and room zoning based on real wall surfaces, resulting in a comprehensive and fully automated workflow. Unlike existing tools, it avoids computationally- and calibration-intensive techniques such as RANSAC, supports non-orthogonal geometries, and provides unprecedented processing speed-achieving results up to seven times faster than fastest competing solutions. Systematic validation using benchmark datasets confirms that Cloud2BIM is an easy-to-use, efficient, and scalable solution for generating accurate BIM models, capable of converting extensive point cloud datasets for entire buildings into IFC format with minimal user input.
Related papers
- Dual-Model Distillation for Efficient Action Classification with Hybrid Edge-Cloud Solution [1.8029479474051309]
We design a hybrid edge-cloud solution that leverages the efficiency of smaller models for local processing while deferring to larger, more accurate cloud-based models when necessary.
Specifically, we propose a novel unsupervised data generation method, Dual-Model Distillation (DMD), to train a lightweight switcher model that can predict when the edge model's output is uncertain.
Experimental results on the action classification task show that our framework not only requires less computational overhead, but also improves accuracy compared to using a large model alone.
arXiv Detail & Related papers (2024-10-16T02:06:27Z) - GERA: Geometric Embedding for Efficient Point Registration Analysis [20.690695788384517]
We propose a novel point cloud registration network that leverages a pure geometric architecture, constructing geometric information offline.
Our method is the first to replace 3D coordinate inputs with offline-constructed geometric encoding, improving generalization and stability.
arXiv Detail & Related papers (2024-10-01T11:19:56Z) - Bringing Masked Autoencoders Explicit Contrastive Properties for Point Cloud Self-Supervised Learning [116.75939193785143]
Contrastive learning (CL) for Vision Transformers (ViTs) in image domains has achieved performance comparable to CL for traditional convolutional backbones.
In 3D point cloud pretraining with ViTs, masked autoencoder (MAE) modeling remains dominant.
arXiv Detail & Related papers (2024-07-08T12:28:56Z) - Towards Robust and Efficient Cloud-Edge Elastic Model Adaptation via Selective Entropy Distillation [56.79064699832383]
We establish a Cloud-Edge Elastic Model Adaptation (CEMA) paradigm in which the edge models only need to perform forward propagation.
In our CEMA, to reduce the communication burden, we devise two criteria to exclude unnecessary samples from uploading to the cloud.
arXiv Detail & Related papers (2024-02-27T08:47:19Z) - Adaptive Point Transformer [88.28498667506165]
Adaptive Point Cloud Transformer (AdaPT) is a standard PT model augmented by an adaptive token selection mechanism.
AdaPT dynamically reduces the number of tokens during inference, enabling efficient processing of large point clouds.
arXiv Detail & Related papers (2024-01-26T13:24:45Z) - In Situ Framework for Coupling Simulation and Machine Learning with
Application to CFD [51.04126395480625]
Recent years have seen many successful applications of machine learning (ML) to facilitate fluid dynamic computations.
As simulations grow, generating new training datasets for traditional offline learning creates I/O and storage bottlenecks.
This work offers a solution by simplifying this coupling and enabling in situ training and inference on heterogeneous clusters.
arXiv Detail & Related papers (2023-06-22T14:07:54Z) - A Hybrid Semantic-Geometric Approach for Clutter-Resistant Floorplan
Generation from Building Point Clouds [2.0859227544921874]
This research proposes a hybrid semantic-geometric approach for clutter-resistant floorplan generation from laser-scanned building point clouds.
The proposed method is evaluated using the metrics of precision, recall, Intersection-over-Union (IOU), Betti error, and warping error.
arXiv Detail & Related papers (2023-05-15T20:08:43Z) - DSMNet: Deep High-precision 3D Surface Modeling from Sparse Point Cloud
Frames [12.531880335603145]
Existing point cloud modeling datasets express the modeling precision by pose or trajectory precision rather than the point cloud modeling effect itself.
We propose a novel learning-based joint framework, DSMNet, for high-precision 3D surface modeling from sparse point cloud frames.
arXiv Detail & Related papers (2023-04-09T09:23:06Z) - AdaPoinTr: Diverse Point Cloud Completion with Adaptive Geometry-Aware
Transformers [94.11915008006483]
We present a new method that reformulates point cloud completion as a set-to-set translation problem.
We design a new model, called PoinTr, which adopts a Transformer encoder-decoder architecture for point cloud completion.
Our method attains 6.53 CD on PCN, 0.81 CD on ShapeNet-55 and 0.392 MMD on real-world KITTI.
arXiv Detail & Related papers (2023-01-11T16:14:12Z) - SoftPoolNet: Shape Descriptor for Point Cloud Completion and
Classification [93.54286830844134]
We propose a method for 3D object completion and classification based on point clouds.
For the decoder stage, we propose regional convolutions, a novel operator aimed at maximizing the global activation entropy.
We evaluate our approach on different 3D tasks such as object completion and classification, achieving state-of-the-art accuracy.
arXiv Detail & Related papers (2020-08-17T14:32:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.