論文の概要: Optimizing Coverage-Driven Verification Using Machine Learning and PyUVM: A Novel Approach
- arxiv url: http://arxiv.org/abs/2503.11666v1
- Date: Sun, 23 Feb 2025 17:54:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-23 07:36:59.894274
- Title: Optimizing Coverage-Driven Verification Using Machine Learning and PyUVM: A Novel Approach
- Title(参考訳): 機械学習とPyUVMによるカバレッジ駆動検証の最適化:新しいアプローチ
- Authors: Suruchi Kumari, Deepak Narayan Gadde, Aman Kumar,
- Abstract要約: System-on-Chip(SoC)設計の複雑さは、検証のボトルネックを生み出した。
既存の検証技術は、時間と冗長なシミュレーションの回帰に依存する。
シミュレーション回帰を最適化するために教師付き機械学習(ML)を活用する新しい手法を提案する。
- 参考スコア(独自算出の注目度): 2.3624953088402734
- License:
- Abstract: The escalating complexity of System-on-Chip (SoC) designs has created a bottleneck in verification, with traditional techniques struggling to achieve complete coverage. Existing techniques, such as Constrained Random Verification (CRV) and coverage-driven methodologies, rely on time-consuming and redundant simulation regression, leading to higher verification costs and longer time-to-market due to the manual effort required to adjust constraints and drive the stimuli to achieve coverage objectives. To address this challenge, we propose a novel methodology that leverages supervised Machine Learning (ML) to optimize simulation regressions, resulting in reduced simulation run-time and the number of test simulations required to achieve target coverage goals. We also investigate and compare the effectiveness of various supervised learning algorithms from scikit-learn. Our results demonstrate that these algorithms can achieve at least 99% coverage regain with significantly reduced simulation cycles. We utilize Python Universal Verification Methodology (PyUVM) over SystemVerilog-Universal Verification Methodology (SV-UVM) for testbench creation, enabling simpler constructs using Python and facilitating the reuse of existing ML libraries. Our methodology is applied to three diverse designs, and our results show that it can significantly reduce verification costs, manual efforts, and time-to-market, while enhancing verification productivity and completeness, by automating the testbench update process and achieving target coverage goals.
- Abstract(参考訳): System-on-Chip(SoC)設計のエスカレートする複雑さは、検証のボトルネックを生み出し、従来のテクニックは完全なカバレッジを達成するのに苦労している。
Constrained Random Verification (CRV) やカバレッジ駆動手法のような既存の手法は、時間を要する冗長なシミュレーションの回帰に依存しており、制約を調整し、カバレッジ目的を達成するために刺激を駆動するために必要な手作業のために、より高い検証コストとより長い市場投入時間をもたらす。
この課題に対処するために,教師付き機械学習(ML)を活用してシミュレーション回帰を最適化する手法を提案する。
また,Scikit-Lernからの各種教師付き学習アルゴリズムの有効性について検討・比較を行った。
その結果、これらのアルゴリズムはシミュレーションサイクルを大幅に短縮することで、少なくとも99%のカバレッジを回復できることが示された。
テストベンチ作成には,Python Universal Verilog-Universal Verification Methodology (SV-UVM) 上でPython Universal Verification Methodology (PyUVM) を利用する。
提案手法は3つの多種多様な設計に適用され,テストベンチ更新プロセスの自動化と対象範囲の達成により,検証コスト,手作業,市場投入時間を大幅に削減できるとともに,検証生産性と完全性も向上できることを示した。
関連論文リスト
- Step-by-Step Reasoning for Math Problems via Twisted Sequential Monte Carlo [55.452453947359736]
Twisted Sequential Monte Carlo(TSMC)に基づく新しい検証手法を提案する。
TSMCを大規模言語モデルに適用し、部分解に対する将来的な報酬を推定する。
このアプローチは、ステップワイドなヒューマンアノテーションを必要としない、より直接的なトレーニングターゲットをもたらす。
論文 参考訳(メタデータ) (2024-10-02T18:17:54Z) - Efficient Stimuli Generation using Reinforcement Learning in Design Verification [2.9652396326501864]
Reinforcement Learning (RL) は、Reinforcement Learning (RL) の助けを借りて効率的な刺激を生成するために提案され、Design Under Verification (DUV) の最大コードカバレッジに到達する。
本稿では,Reinforcement Learning (RL) の助けを借りて効率的な刺激を生成する手法を提案する。
論文 参考訳(メタデータ) (2024-05-30T08:23:04Z) - Federated Conditional Stochastic Optimization [110.513884892319]
条件付き最適化は、不変学習タスク、AUPRC、AMLなど、幅広い機械学習タスクで見られる。
本稿では,分散フェデレーション学習のためのアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-10-04T01:47:37Z) - Mitigating ML Model Decay in Continuous Integration with Data Drift
Detection: An Empirical Study [7.394099294390271]
本研究では,CI環境におけるTCP用MLモデルのリトレーニングポイントを自動的に検出するデータドリフト検出手法の性能について検討する。
我々はHellinger距離を用いて入力データの値と分布の変化を同定し、これらの変化をMLモデルの再学習点として利用した。
Hellinger distance-based methodの実験により,再学習点の検出と関連するコストの低減に効果と効率が示された。
論文 参考訳(メタデータ) (2023-05-22T05:55:23Z) - NEVIS'22: A Stream of 100 Tasks Sampled from 30 Years of Computer Vision
Research [96.53307645791179]
我々は,100以上の視覚的分類タスクのストリームからなるベンチマークであるNever-Ending VIsual-classification Stream (NEVIS'22)を紹介する。
分類に制限されているにもかかわらず、OCR、テクスチャ分析、シーン認識など、様々なタスクが生成される。
NEVIS'22は、タスクの規模と多様性のために、現在のシーケンシャルな学習アプローチに対して前例のない課題を提起している。
論文 参考訳(メタデータ) (2022-11-15T18:57:46Z) - Towards Automated Imbalanced Learning with Deep Hierarchical
Reinforcement Learning [57.163525407022966]
不均衡学習はデータマイニングにおいて基本的な課題であり、各クラスにトレーニングサンプルの不均等な比率が存在する。
オーバーサンプリングは、少数民族のための合成サンプルを生成することによって、不均衡な学習に取り組む効果的な手法である。
我々は,異なるレベルの意思決定を共同で最適化できる自動オーバーサンプリングアルゴリズムであるAutoSMOTEを提案する。
論文 参考訳(メタデータ) (2022-08-26T04:28:01Z) - Feasibility Layer Aided Machine Learning Approach for Day-Ahead
Operations [0.5076419064097734]
デイアヘッド演算は、ジェネレータのコミットスケジュールとディスパッチを決定する、複雑で計算集約的な最適化プロセスを含む。
過去の情報における既存のパターンは、セキュリティ制約単位コミットメント(SCUC)のモデル削減に活用できる。
提案手法は,IEEE 24-Busシステム,IEEE-73バスシステム,IEEE 118-Busシステム,500-Busシステム,ポーランド2383-Busシステムなど,いくつかの試験システムで検証されている。
論文 参考訳(メタデータ) (2022-08-13T22:44:42Z) - Machine Learning Methods for Spectral Efficiency Prediction in Massive
MIMO Systems [0.0]
本研究では,特定のプリコーディング方式のスペクトル効率(SE)値を最短時間で推定する機械学習手法について検討する。
平均パーセンテージ誤差(MAPE)の最も良い結果は、ソートされた特徴よりも勾配が上昇し、線形モデルは予測精度が悪くなることを示す。
そこで本研究では,Quadrigaシミュレータによって生成される幅広いシナリオにおける提案アルゴリズムの実用性について検討する。
論文 参考訳(メタデータ) (2021-12-29T07:03:10Z) - Memory-Based Optimization Methods for Model-Agnostic Meta-Learning and
Personalized Federated Learning [56.17603785248675]
モデルに依存しないメタラーニング (MAML) が人気のある研究分野となっている。
既存のMAMLアルゴリズムは、イテレーション毎にメタモデルを更新するためにいくつかのタスクとデータポイントをサンプリングすることで、エピソードのアイデアに依存している。
本稿では,MAMLのメモリベースアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-06-09T08:47:58Z) - DEALIO: Data-Efficient Adversarial Learning for Imitation from
Observation [57.358212277226315]
観察ifoからの模倣学習において、学習エージェントは、実演者の生成した制御信号にアクセスせずに、実演行動の観察のみを用いて実演エージェントを模倣しようとする。
近年、逆模倣学習に基づく手法は、ifO問題に対する最先端のパフォーマンスをもたらすが、データ非効率でモデルなしの強化学習アルゴリズムに依存するため、サンプルの複雑さに悩まされることが多い。
この問題は、サンプルの収集が時間、エネルギー、およびリスクの面で高いコストを被る可能性がある現実世界の設定に展開することは非現実的です。
よりデータ効率の高いifOアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-03-31T23:46:32Z) - Efficient falsification approach for autonomous vehicle validation using
a parameter optimisation technique based on reinforcement learning [6.198523595657983]
自律走行車(AV)の大規模展開は、まだ解決されていない多くの安全上の課題にもかかわらず、差し迫っているように見える。
交通参加者とダイナミックワールドの行動の不確実性は、先進的な自律システムにおいて反応を引き起こす。
本稿では,システム・アンダー・テストを評価するための効率的なファルシフィケーション手法を提案する。
論文 参考訳(メタデータ) (2020-11-16T02:56:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。