論文の概要: The Relativity of Causal Knowledge
- arxiv url: http://arxiv.org/abs/2503.11718v1
- Date: Thu, 13 Mar 2025 16:24:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-18 12:33:04.510685
- Title: The Relativity of Causal Knowledge
- Title(参考訳): 因果知識の相対性
- Authors: Gabriele D'Acunto, Claudio Battiloro,
- Abstract要約: 人工知能の最近の進歩は、純粋に予測可能なシステムの限界を明らかにし、因果的および協調的推論へのシフトを要求する。
本稿では、構造因果モデル(SCM)が本質的に不完全であり、関係ネットワークに埋め込まれた主観的表現であることを示す因果知識の相対性について紹介する。
- 参考スコア(独自算出の注目度): 4.051523221722475
- License:
- Abstract: Recent advances in artificial intelligence reveal the limits of purely predictive systems and call for a shift toward causal and collaborative reasoning. Drawing inspiration from the revolution of Grothendieck in mathematics, we introduce the relativity of causal knowledge, which posits structural causal models (SCMs) are inherently imperfect, subjective representations embedded within networks of relationships. By leveraging category theory, we arrange SCMs into a functor category and show that their observational and interventional probability measures naturally form convex structures. This result allows us to encode non-intervened SCMs with convex spaces of probability measures. Next, using sheaf theory, we construct the network sheaf and cosheaf of causal knowledge. These structures enable the transfer of causal knowledge across the network while incorporating interventional consistency and the perspective of the subjects, ultimately leading to the formal, mathematical definition of relative causal knowledge.
- Abstract(参考訳): 人工知能の最近の進歩は、純粋に予測可能なシステムの限界を明らかにし、因果的および協調的推論へのシフトを要求する。
数学におけるグロタンディークの革命からインスピレーションを得て、構造因果モデル(SCM)が本質的に不完全な主観的表現であり、関係のネットワークに埋め込まれていることを示唆する因果的知識の相対性を導入する。
圏論を利用して、SCMを関手圏に配置し、それらの観測的および介入的確率測度が自然に凸構造を形成することを示す。
この結果により、確率測度の凸空間を持つ非連結SCMを符号化できる。
次に、せん断理論を用いて、因果知識のネットワーク層とコシャフを構築する。
これらの構造は、介入の一貫性と主題の視点を取り入れつつ、ネットワークを横断する因果的知識の伝達を可能にし、最終的には相対因果的知識の形式的数学的定義へと繋がる。
関連論文リスト
- Algorithmic causal structure emerging through compression [53.52699766206808]
因果関係,対称性,圧縮の関係について検討する。
我々は、学習と圧縮の既知の関係を因果モデルが識別できないような環境に構築し、一般化する。
我々はアルゴリズム因果関係を因果関係の代替的定義として定義する。
論文 参考訳(メタデータ) (2025-02-06T16:50:57Z) - Learning Discrete Concepts in Latent Hierarchical Models [73.01229236386148]
自然の高次元データから学習する概念は、ヒューマンアライメントと解釈可能な機械学習モデルの構築の可能性を秘めている。
我々は概念を階層的因果モデルを通して関連付けられた離散潜在因果変数として定式化する。
我々は、理論的な主張を合成データ実験で裏付ける。
論文 参考訳(メタデータ) (2024-06-01T18:01:03Z) - Emergence and Causality in Complex Systems: A Survey on Causal Emergence
and Related Quantitative Studies [12.78006421209864]
因果発生理論は出現を定量化するために因果関係の尺度を用いる。
因果の出現を定量化し、データを識別する。
因果表現学習,因果モデル抽象化,世界モデルに基づく強化学習によって,因果表現の出現を識別するアーキテクチャが共有されることを強調した。
論文 参考訳(メタデータ) (2023-12-28T04:20:46Z) - Targeted Reduction of Causal Models [55.11778726095353]
因果表現学習(Causal Representation Learning)は、シミュレーションで解釈可能な因果パターンを明らかにするための有望な道を提供する。
本稿では、複雑な相互作用可能なモデルを因果因子の簡潔な集合に凝縮する方法であるTCR(Targeted Causal Reduction)を紹介する。
複雑なモデルから解釈可能な高レベルな説明を生成する能力は、玩具や機械システムで実証されている。
論文 参考訳(メタデータ) (2023-11-30T15:46:22Z) - Causal reasoning in typical computer vision tasks [11.95181390654463]
因果理論は、データバイアスの影響を受けない本質的な因果構造をモデル化し、突発的な相関を避けるのに有効である。
本稿では,一般的な視覚・視覚言語タスクにおける既存の因果的手法(セグメンテーション,オブジェクト検出,画像キャプションなど)を包括的にレビューすることを目的とする。
今後のロードマップも提案され、因果論の開発と他の複雑なシーンやシステムへの応用が促進される。
論文 参考訳(メタデータ) (2023-07-26T07:01:57Z) - Learning a Structural Causal Model for Intuition Reasoning in
Conversation [20.243323155177766]
NLP研究の重要な側面である推論は、一般的なモデルによって適切に対処されていない。
我々は、各発話がどのように情報チャネルを受信し、活性化するかを説明する会話認知モデル(CCM)を開発した。
変分推論を利用することで、暗黙的な原因の代用を探索し、その観測不可能性の問題に対処し、証拠の低い境界を通して発話の因果表現を再構築する。
論文 参考訳(メタデータ) (2023-05-28T13:54:09Z) - Hierarchical Graph Neural Networks for Causal Discovery and Root Cause
Localization [52.72490784720227]
REASONはTopological Causal DiscoveryとPersonal Causal Discoveryで構成されている。
Topological Causal Discoveryコンポーネントは、根本原因を辿るために断層伝播をモデル化することを目的としている。
個々の因果発見コンポーネントは、単一のシステムエンティティの突然の変化パターンのキャプチャに重点を置いている。
論文 参考訳(メタデータ) (2023-02-03T20:17:45Z) - Relating Graph Neural Networks to Structural Causal Models [17.276657786213015]
因果関係は、興味のある変数とその力学関係に関する情報を伝達する構造因果モデル(SCM)によって記述することができる。
本稿では,GNNとSCMの新たな接続を確立する理論解析について述べる。
次に、GNNに基づく因果推論のための新しいモデルクラスを構築し、因果効果の同定に十分である。
論文 参考訳(メタデータ) (2021-09-09T11:16:31Z) - The Causal Neural Connection: Expressiveness, Learnability, and
Inference [125.57815987218756]
構造因果モデル (Structuor causal model, SCM) と呼ばれるオブジェクトは、調査中のシステムのランダムな変動のメカニズムと源の集合を表す。
本稿では, 因果的階層定理 (Thm. 1, Bareinboim et al., 2020) がまだニューラルモデルに対して成り立っていることを示す。
我々はニューラル因果モデル(NCM)と呼ばれる特殊なタイプのSCMを導入し、因果推論に必要な構造的制約をエンコードする新しいタイプの帰納バイアスを定式化する。
論文 参考訳(メタデータ) (2021-07-02T01:55:18Z) - Structural Causal Models Are (Solvable by) Credal Networks [70.45873402967297]
因果推論は、干潟網の更新のための標準的なアルゴリズムによって得ることができる。
この貢献は, 干潟ネットワークによる構造因果モデルを表現するための体系的なアプローチと見なされるべきである。
実験により, 実規模問題における因果推論には, クレーダルネットワークの近似アルゴリズムがすぐに利用できることがわかった。
論文 参考訳(メタデータ) (2020-08-02T11:19:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。