SPECTra: Scalable Multi-Agent Reinforcement Learning with Permutation-Free Networks
- URL: http://arxiv.org/abs/2503.11726v1
- Date: Fri, 14 Mar 2025 04:26:51 GMT
- Title: SPECTra: Scalable Multi-Agent Reinforcement Learning with Permutation-Free Networks
- Authors: Hyunwoo Park, Baekryun Seong, Sang-Ki Ko,
- Abstract summary: In cooperative multi-agent reinforcement learning (MARL), the permutation problem where the state space grows exponentially with the number of agents reduces sample efficiency.<n>We propose a novel agent network and a non-linear mixing network that ensure permutation-equivariance and scalability.<n>Our approach achieves superior learning performance compared to existing methods.
- Score: 3.7687375904925484
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In cooperative multi-agent reinforcement learning (MARL), the permutation problem where the state space grows exponentially with the number of agents reduces sample efficiency. Additionally, many existing architectures struggle with scalability, relying on a fixed structure tied to a specific number of agents, limiting their applicability to environments with a variable number of entities. While approaches such as graph neural networks (GNNs) and self-attention mechanisms have progressed in addressing these challenges, they have significant limitations as dense GNNs and self-attention mechanisms incur high computational costs. To overcome these limitations, we propose a novel agent network and a non-linear mixing network that ensure permutation-equivariance and scalability, allowing them to generalize to environments with various numbers of agents. Our agent network significantly reduces computational complexity, and our scalable hypernetwork enables efficient weight generation for non-linear mixing. Additionally, we introduce curriculum learning to improve training efficiency. Experiments on SMACv2 and Google Research Football (GRF) demonstrate that our approach achieves superior learning performance compared to existing methods. By addressing both permutation-invariance and scalability in MARL, our work provides a more efficient and adaptable framework for cooperative MARL. Our code is available at https://github.com/funny-rl/SPECTra.
Related papers
- FusionLLM: A Decentralized LLM Training System on Geo-distributed GPUs with Adaptive Compression [55.992528247880685]
Decentralized training faces significant challenges regarding system design and efficiency.
We present FusionLLM, a decentralized training system designed and implemented for training large deep neural networks (DNNs)
We show that our system and method can achieve 1.45 - 9.39x speedup compared to baseline methods while ensuring convergence.
arXiv Detail & Related papers (2024-10-16T16:13:19Z) - Heterogenous Memory Augmented Neural Networks [84.29338268789684]
We introduce a novel heterogeneous memory augmentation approach for neural networks.
By introducing learnable memory tokens with attention mechanism, we can effectively boost performance without huge computational overhead.
We show our approach on various image and graph-based tasks under both in-distribution (ID) and out-of-distribution (OOD) conditions.
arXiv Detail & Related papers (2023-10-17T01:05:28Z) - Inverse Factorized Q-Learning for Cooperative Multi-agent Imitation
Learning [13.060023718506917]
imitation learning (IL) is a problem of learning to mimic expert behaviors from demonstrations in cooperative multi-agent systems.
We introduce a novel multi-agent IL algorithm designed to address these challenges.
Our approach enables the centralized learning by leveraging mixing networks to aggregate decentralized Q functions.
arXiv Detail & Related papers (2023-10-10T17:11:20Z) - A Multi-Head Ensemble Multi-Task Learning Approach for Dynamical
Computation Offloading [62.34538208323411]
We propose a multi-head ensemble multi-task learning (MEMTL) approach with a shared backbone and multiple prediction heads (PHs)
MEMTL outperforms benchmark methods in both the inference accuracy and mean square error without requiring additional training data.
arXiv Detail & Related papers (2023-09-02T11:01:16Z) - Multi-Objective Optimization for Sparse Deep Multi-Task Learning [0.0]
We present a Multi-Objective Optimization algorithm using a modified Weighted Chebyshev scalarization for training Deep Neural Networks (DNNs)
Our work aims to address the (economical and also ecological) sustainability issue of DNN models, with particular focus on Deep Multi-Task models.
arXiv Detail & Related papers (2023-08-23T16:42:27Z) - MADiff: Offline Multi-agent Learning with Diffusion Models [79.18130544233794]
MADiff is a diffusion-based multi-agent learning framework.<n>It works as both a decentralized policy and a centralized controller.<n>Our experiments demonstrate that MADiff outperforms baseline algorithms across various multi-agent learning tasks.
arXiv Detail & Related papers (2023-05-27T02:14:09Z) - Residual Q-Networks for Value Function Factorizing in Multi-Agent
Reinforcement Learning [0.0]
We propose a novel concept of Residual Q-Networks (RQNs) for Multi-Agent Reinforcement Learning (MARL)
The RQN learns to transform the individual Q-value trajectories in a way that preserves the Individual-Global-Max criteria (IGM)
The proposed method converges faster, with increased stability and shows robust performance in a wider family of environments.
arXiv Detail & Related papers (2022-05-30T16:56:06Z) - Coordinated Reinforcement Learning for Optimizing Mobile Networks [6.924083445159127]
We show how to use coordination graphs and reinforcement learning in a complex application involving hundreds of cooperating agents.
We show empirically that coordinated reinforcement learning outperforms other methods.
arXiv Detail & Related papers (2021-09-30T14:46:18Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
We propose an efficient model-based reinforcement learning algorithm for learning in multi-agent systems.
Our main theoretical contributions are the first general regret bounds for model-based reinforcement learning for MFC.
We provide a practical parametrization of the core optimization problem.
arXiv Detail & Related papers (2021-07-08T18:01:02Z) - Efficient Feature Transformations for Discriminative and Generative
Continual Learning [98.10425163678082]
We propose a simple task-specific feature map transformation strategy for continual learning.
Theses provide powerful flexibility for learning new tasks, achieved with minimal parameters added to the base architecture.
We demonstrate the efficacy and efficiency of our method with an extensive set of experiments in discriminative (CIFAR-100 and ImageNet-1K) and generative sequences of tasks.
arXiv Detail & Related papers (2021-03-25T01:48:14Z) - Scaling Up Multiagent Reinforcement Learning for Robotic Systems: Learn
an Adaptive Sparse Communication Graph [39.48317026356428]
The complexity of multiagent reinforcement learning increases exponentially with respect to the agent number.
One critical feature in MARL that is often neglected is that the interactions between agents are quite sparse.
We propose an adaptive sparse attention mechanism by generalizing a sparsity-inducing activation function.
We show that our algorithm can learn an interpretable sparse structure and outperforms previous works by a significant margin on applications involving a large-scale multiagent system.
arXiv Detail & Related papers (2020-03-02T17:18:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.