Multi-Objective Optimization for Sparse Deep Multi-Task Learning
- URL: http://arxiv.org/abs/2308.12243v4
- Date: Tue, 26 Mar 2024 15:12:19 GMT
- Title: Multi-Objective Optimization for Sparse Deep Multi-Task Learning
- Authors: S. S. Hotegni, M. Berkemeier, S. Peitz,
- Abstract summary: We present a Multi-Objective Optimization algorithm using a modified Weighted Chebyshev scalarization for training Deep Neural Networks (DNNs)
Our work aims to address the (economical and also ecological) sustainability issue of DNN models, with particular focus on Deep Multi-Task models.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Different conflicting optimization criteria arise naturally in various Deep Learning scenarios. These can address different main tasks (i.e., in the setting of Multi-Task Learning), but also main and secondary tasks such as loss minimization versus sparsity. The usual approach is a simple weighting of the criteria, which formally only works in the convex setting. In this paper, we present a Multi-Objective Optimization algorithm using a modified Weighted Chebyshev scalarization for training Deep Neural Networks (DNNs) with respect to several tasks. By employing this scalarization technique, the algorithm can identify all optimal solutions of the original problem while reducing its complexity to a sequence of single-objective problems. The simplified problems are then solved using an Augmented Lagrangian method, enabling the use of popular optimization techniques such as Adam and Stochastic Gradient Descent, while efficaciously handling constraints. Our work aims to address the (economical and also ecological) sustainability issue of DNN models, with a particular focus on Deep Multi-Task models, which are typically designed with a very large number of weights to perform equally well on multiple tasks. Through experiments conducted on two Machine Learning datasets, we demonstrate the possibility of adaptively sparsifying the model during training without significantly impacting its performance, if we are willing to apply task-specific adaptations to the network weights. Code is available at https://github.com/salomonhotegni/MDMTN
Related papers
- Towards Efficient Pareto Set Approximation via Mixture of Experts Based Model Fusion [53.33473557562837]
Solving multi-objective optimization problems for large deep neural networks is a challenging task due to the complexity of the loss landscape and the expensive computational cost.
We propose a practical and scalable approach to solve this problem via mixture of experts (MoE) based model fusion.
By ensembling the weights of specialized single-task models, the MoE module can effectively capture the trade-offs between multiple objectives.
arXiv Detail & Related papers (2024-06-14T07:16:18Z) - Training Artificial Neural Networks by Coordinate Search Algorithm [0.20971479389679332]
We propose an efficient version of the gradient-free Coordinate Search (CS) algorithm for training neural networks.
The proposed algorithm can be used with non-differentiable activation functions and tailored to multi-objective/multi-loss problems.
Finding the optimal values for weights of ANNs is a large-scale optimization problem.
arXiv Detail & Related papers (2024-02-20T01:47:25Z) - Efficient Meta Neural Heuristic for Multi-Objective Combinatorial
Optimization [35.09656455088854]
We propose an efficient meta neural vector (EMNH) to solve multi-objective optimization problems.
EMNH is able to outperform the state-of-the-art neurals in terms of solution quality and learning efficiency.
arXiv Detail & Related papers (2023-10-22T08:59:02Z) - Scalarization for Multi-Task and Multi-Domain Learning at Scale [15.545810422759295]
Training a single model on multiple input domains and/or output tasks allows for compressing information from multiple sources into a unified backbone.
However, optimizing such networks is a challenge due to discrepancies between the different tasks or domains.
arXiv Detail & Related papers (2023-10-13T07:31:04Z) - A Multi-Head Ensemble Multi-Task Learning Approach for Dynamical
Computation Offloading [62.34538208323411]
We propose a multi-head ensemble multi-task learning (MEMTL) approach with a shared backbone and multiple prediction heads (PHs)
MEMTL outperforms benchmark methods in both the inference accuracy and mean square error without requiring additional training data.
arXiv Detail & Related papers (2023-09-02T11:01:16Z) - Task Adaptive Parameter Sharing for Multi-Task Learning [114.80350786535952]
Adaptive Task Adapting Sharing (TAPS) is a method for tuning a base model to a new task by adaptively modifying a small, task-specific subset of layers.
Compared to other methods, TAPS retains high accuracy on downstream tasks while introducing few task-specific parameters.
We evaluate our method on a suite of fine-tuning tasks and architectures (ResNet, DenseNet, ViT) and show that it achieves state-of-the-art performance while being simple to implement.
arXiv Detail & Related papers (2022-03-30T23:16:07Z) - Controllable Dynamic Multi-Task Architectures [92.74372912009127]
We propose a controllable multi-task network that dynamically adjusts its architecture and weights to match the desired task preference as well as the resource constraints.
We propose a disentangled training of two hypernetworks, by exploiting task affinity and a novel branching regularized loss, to take input preferences and accordingly predict tree-structured models with adapted weights.
arXiv Detail & Related papers (2022-03-28T17:56:40Z) - Conflict-Averse Gradient Descent for Multi-task Learning [56.379937772617]
A major challenge in optimizing a multi-task model is the conflicting gradients.
We introduce Conflict-Averse Gradient descent (CAGrad) which minimizes the average loss function.
CAGrad balances the objectives automatically and still provably converges to a minimum over the average loss.
arXiv Detail & Related papers (2021-10-26T22:03:51Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
There is an increasing need for active learning algorithms that are compatible with deep neural networks.
This article introduces BAIT, a practical representation of tractable, and high-performing active learning algorithm for neural networks.
arXiv Detail & Related papers (2021-06-17T17:26:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.