Color Matching Using Hypernetwork-Based Kolmogorov-Arnold Networks
- URL: http://arxiv.org/abs/2503.11781v1
- Date: Fri, 14 Mar 2025 18:17:19 GMT
- Title: Color Matching Using Hypernetwork-Based Kolmogorov-Arnold Networks
- Authors: Artem Nikonorov, Georgy Perevozchikov, Andrei Korepanov, Nancy Mehta, Mahmoud Afifi, Egor Ershov, Radu Timofte,
- Abstract summary: cmKAN is a versatile framework for color matching.<n>We use Kolmogorov-Arnold Networks (KANs) to model the color matching between source and target distributions.<n>We introduce a first large-scale dataset of paired images captured by two distinct cameras.
- Score: 44.97307414849601
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present cmKAN, a versatile framework for color matching. Given an input image with colors from a source color distribution, our method effectively and accurately maps these colors to match a target color distribution in both supervised and unsupervised settings. Our framework leverages the spline capabilities of Kolmogorov-Arnold Networks (KANs) to model the color matching between source and target distributions. Specifically, we developed a hypernetwork that generates spatially varying weight maps to control the nonlinear splines of a KAN, enabling accurate color matching. As part of this work, we introduce a first large-scale dataset of paired images captured by two distinct cameras and evaluate the efficacy of our and existing methods in matching colors. We evaluated our approach across various color-matching tasks, including: (1) raw-to-raw mapping, where the source color distribution is in one camera's raw color space and the target in another camera's raw space; (2) raw-to-sRGB mapping, where the source color distribution is in a camera's raw space and the target is in the display sRGB space, emulating the color rendering of a camera ISP; and (3) sRGB-to-sRGB mapping, where the goal is to transfer colors from a source sRGB space (e.g., produced by a source camera ISP) to a target sRGB space (e.g., from a different camera ISP). The results show that our method outperforms existing approaches by 37.3% on average for supervised and unsupervised cases while remaining lightweight compared to other methods. The codes, dataset, and pre-trained models are available at: https://github.com/gosha20777/cmKAN
Related papers
- MultiColor: Image Colorization by Learning from Multiple Color Spaces [4.738828630428634]
MultiColor is a new learning-based approach to automatically colorize grayscale images.
We employ a set of dedicated colorization modules for individual color space.
With these predicted color channels representing various color spaces, a complementary network is designed to exploit the complementarity and generate pleasing and reasonable colorized images.
arXiv Detail & Related papers (2024-08-08T02:34:41Z) - Enhancing RAW-to-sRGB with Decoupled Style Structure in Fourier Domain [27.1716081216131]
Current methods ignore the difference between cell phone RAW images and DSLR camera RGB images.
We present a novel Neural ISP framework, named FourierISP.
This approach breaks the image down into style and structure within the frequency domain, allowing for independent optimization.
arXiv Detail & Related papers (2024-01-04T09:18:31Z) - SPDGAN: A Generative Adversarial Network based on SPD Manifold Learning for Automatic Image Colorization [1.1174586184779576]
We propose a fully automatic colorization approach based on Symmetric Positive Definite (SPD) Manifold Learning with a generative adversarial network (SPDGAN)<n>Our model establishes an adversarial game between two discriminators and a generator. Its goal is to generate fake colorized images without losing color information across layers through residual connections.
arXiv Detail & Related papers (2023-12-21T00:52:01Z) - Training Neural Networks on RAW and HDR Images for Restoration Tasks [59.41340420564656]
In this work, we test approaches on three popular image restoration applications: denoising, deblurring, and single-image super-resolution.
Our results indicate that neural networks train significantly better on HDR and RAW images represented in display color spaces.
This small change to the training strategy can bring a very substantial gain in performance, up to 10-15 dB.
arXiv Detail & Related papers (2023-12-06T17:47:16Z) - DARC: Distribution-Aware Re-Coloring Model for Generalizable Nucleus
Segmentation [68.43628183890007]
We argue that domain gaps can also be caused by different foreground (nucleus)-background ratios.
First, we introduce a re-coloring method that relieves dramatic image color variations between different domains.
Second, we propose a new instance normalization method that is robust to the variation in the foreground-background ratios.
arXiv Detail & Related papers (2023-09-01T01:01:13Z) - Cross-Camera Deep Colorization [10.254243409261898]
We propose an end-to-end convolutional neural network to align and fuse images from a color-plus-mono dual-camera system.
Our method consistently achieves substantial improvements, i.e., around 10dB PSNR gain.
arXiv Detail & Related papers (2022-08-26T11:02:14Z) - Transform your Smartphone into a DSLR Camera: Learning the ISP in the
Wild [159.71025525493354]
We propose a trainable Image Signal Processing framework that produces DSLR quality images given RAW images captured by a smartphone.
To address the color misalignments between training image pairs, we employ a color-conditional ISP network and optimize a novel parametric color mapping between each input RAW and reference DSLR image.
arXiv Detail & Related papers (2022-03-20T20:13:59Z) - Learning RAW-to-sRGB Mappings with Inaccurately Aligned Supervision [76.41657124981549]
This paper presents a joint learning model for image alignment and RAW-to-sRGB mapping.
Experiments show that our method performs favorably against state-of-the-arts on ZRR and SR-RAW datasets.
arXiv Detail & Related papers (2021-08-18T12:41:36Z) - The Utility of Decorrelating Colour Spaces in Vector Quantised
Variational Autoencoders [1.7792264784100689]
We propose colour space conversion to enforce a network learning structured representations.
We trained several instances of VQ-VAE whose input is an image in one colour space, and its output in another.
arXiv Detail & Related papers (2020-09-30T07:44:01Z) - Learning to Structure an Image with Few Colors [59.34619548026885]
We propose a color quantization network, ColorCNN, which learns to structure the images from the classification loss in an end-to-end manner.
With only a 1-bit color space (i.e., two colors), the proposed network achieves 82.1% top-1 accuracy on the CIFAR10 dataset.
For applications, when encoded with PNG, the proposed color quantization shows superiority over other image compression methods in the extremely low bit-rate regime.
arXiv Detail & Related papers (2020-03-17T17:56:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.