Lifting the Veil on Visual Information Flow in MLLMs: Unlocking Pathways to Faster Inference
- URL: http://arxiv.org/abs/2503.13108v1
- Date: Mon, 17 Mar 2025 12:31:23 GMT
- Title: Lifting the Veil on Visual Information Flow in MLLMs: Unlocking Pathways to Faster Inference
- Authors: Hao Yin, Guangzong Si, Zilei Wang,
- Abstract summary: Multimodal large language models (MLLMs) improve performance on vision-language tasks by integrating visual features from pre-trained vision encoders into large language models.<n>How MLLMs process and utilize visual information remains unclear.<n>We propose Hierarchical Modality-Aware Pruning (HiMAP), a plug-and-play inference acceleration method that dynamically prunes image tokens at specific layers, reducing computational costs by approximately 65% without sacrificing performance.
- Score: 28.24397677839652
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multimodal large language models (MLLMs) improve performance on vision-language tasks by integrating visual features from pre-trained vision encoders into large language models (LLMs). However, how MLLMs process and utilize visual information remains unclear. In this paper, a shift in the dominant flow of visual information is uncovered: (1) in shallow layers, strong interactions are observed between image tokens and instruction tokens, where most visual information is injected into instruction tokens to form cross-modal semantic representations; (2) in deeper layers, image tokens primarily interact with each other, aggregating the remaining visual information to optimize semantic representations within visual modality. Based on these insights, we propose Hierarchical Modality-Aware Pruning (HiMAP), a plug-and-play inference acceleration method that dynamically prunes image tokens at specific layers, reducing computational costs by approximately 65% without sacrificing performance. Our findings offer a new understanding of visual information processing in MLLMs and provide a state-of-the-art solution for efficient inference.
Related papers
- From Visuals to Vocabulary: Establishing Equivalence Between Image and Text Token Through Autoregressive Pre-training in MLLMs [23.011836329934255]
Vision Dynamic Embedding-Guided Pretraining (VDEP) is a hybrid autoregressive training paradigm for MLLMs.<n>The proposed method seamlessly integrates into standard models without architectural changes.<n> Experiments on 13 benchmarks show VDEP outperforms baselines, surpassing existing methods.
arXiv Detail & Related papers (2025-02-13T09:04:28Z) - [CLS] Token Tells Everything Needed for Training-free Efficient MLLMs [66.5266435598799]
Multi-language Large Language Models (MLLMs) have recently demonstrated strong performance across a wide range of vision tasks.
However, their efficient deployment remains a substantial challenge due to high computational costs and memory requirements.
We introduce a simple yet effective method for train-free visual compression, called VTC- compression.
arXiv Detail & Related papers (2024-12-08T05:29:39Z) - Accelerating Multimodal Large Language Models via Dynamic Visual-Token Exit and the Empirical Findings [69.35226485836641]
Excessive use of visual tokens in existing Multimoal Large Language Models (MLLMs) often exhibits obvious redundancy and brings in prohibitively expensive computation.
We propose a simple yet effective method to improve the efficiency of MLLMs, termed dynamic visual-token exit (DyVTE)
DyVTE uses lightweight hyper-networks to perceive the text token status and decide the removal of all visual tokens after a certain layer.
arXiv Detail & Related papers (2024-11-29T11:24:23Z) - Efficient Multi-modal Large Language Models via Visual Token Grouping [55.482198808206284]
High-resolution images and videos pose a barrier to their broader adoption.<n> compressing vision tokens in MLLMs has emerged as a promising approach to reduce inference costs.<n>We introduce VisToG, a novel grouping mechanism that leverages the capabilities of pre-trained vision encoders to group similar image segments.
arXiv Detail & Related papers (2024-11-26T09:36:02Z) - PIP-MM: Pre-Integrating Prompt Information into Visual Encoding via Existing MLLM Structures [5.513631883813244]
We propose a framework that textbfPre-textbfIntegratestextbfPrompt information into the visual encoding process using existingmodules of MLLMs.
Our model maintains excellent generation even when half of the visual tokens are reduced.
arXiv Detail & Related papers (2024-10-30T15:05:17Z) - Rethinking Visual Prompting for Multimodal Large Language Models with External Knowledge [76.45868419402265]
multimodal large language models (MLLMs) have made significant strides by training on vast high-quality image-text datasets.
However, the inherent difficulty in explicitly conveying fine-grained or spatially dense information in text, such as masks, poses a challenge for MLLMs.
This paper proposes a new visual prompt approach to integrate fine-grained external knowledge, gleaned from specialized vision models, into MLLMs.
arXiv Detail & Related papers (2024-07-05T17:43:30Z) - Towards Semantic Equivalence of Tokenization in Multimodal LLM [149.11720372278273]
Vision tokenization is essential for semantic alignment between vision and language.<n>This paper proposes a novel dynamic Semantic-Equivalent Vision Tokenizer (SeTok)<n>SeTok groups visual features into semantic units via a dynamic clustering algorithm.<n>The resulting vision tokens effectively preserve semantic integrity and capture both low-frequency and high-frequency visual features.
arXiv Detail & Related papers (2024-06-07T17:55:43Z) - From Redundancy to Relevance: Information Flow in LVLMs Across Reasoning Tasks [33.476693301050275]
We conduct experiments with truncation strategies across various LVLMs for visual question answering and image captioning tasks.
By exploring the information flow from the perspective of visual representation contribution, we observe that it tends to converge in shallow layers but diversify in deeper layers.
arXiv Detail & Related papers (2024-06-04T13:52:54Z) - Chain-of-Spot: Interactive Reasoning Improves Large Vision-Language Models [81.71651422951074]
Chain-of-Spot (CoS) method is a novel approach that enhances feature extraction by focusing on key regions of interest.
This technique allows LVLMs to access more detailed visual information without altering the original image resolution.
Our empirical findings demonstrate a significant improvement in LVLMs' ability to understand and reason about visual content.
arXiv Detail & Related papers (2024-03-19T17:59:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.