論文の概要: Diffuse-CLoC: Guided Diffusion for Physics-based Character Look-ahead Control
- arxiv url: http://arxiv.org/abs/2503.11801v1
- Date: Fri, 14 Mar 2025 18:42:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-18 21:00:59.110191
- Title: Diffuse-CLoC: Guided Diffusion for Physics-based Character Look-ahead Control
- Title(参考訳): Diffuse-CLoC:物理に基づく文字先制御のための誘導拡散
- Authors: Xiaoyu Huang, Takara Truong, Yunbo Zhang, Fangzhou Yu, Jean Pierre Sleiman, Jessica Hodgins, Koushil Sreenath, Farbod Farshidian,
- Abstract要約: 物理に基づくルックアヘッド制御のためのガイド付き拡散フレームワークであるDiffuse-CLoCを提案する。
直感的で、ステアブルで、物理的にリアルなモーション生成を可能にする。
- 参考スコア(独自算出の注目度): 16.319698848279966
- License:
- Abstract: We present Diffuse-CLoC, a guided diffusion framework for physics-based look-ahead control that enables intuitive, steerable, and physically realistic motion generation. While existing kinematics motion generation with diffusion models offer intuitive steering capabilities with inference-time conditioning, they often fail to produce physically viable motions. In contrast, recent diffusion-based control policies have shown promise in generating physically realizable motion sequences, but the lack of kinematics prediction limits their steerability. Diffuse-CLoC addresses these challenges through a key insight: modeling the joint distribution of states and actions within a single diffusion model makes action generation steerable by conditioning it on the predicted states. This approach allows us to leverage established conditioning techniques from kinematic motion generation while producing physically realistic motions. As a result, we achieve planning capabilities without the need for a high-level planner. Our method handles a diverse set of unseen long-horizon downstream tasks through a single pre-trained model, including static and dynamic obstacle avoidance, motion in-betweening, and task-space control. Experimental results show that our method significantly outperforms the traditional hierarchical framework of high-level motion diffusion and low-level tracking.
- Abstract(参考訳): Diffuse-CLoCは物理ベースのルックアヘッド制御のためのガイド付き拡散フレームワークで、直感的で、操縦可能で、物理的にリアルなモーション生成を可能にする。
拡散モデルを持つ既存のキネマティクスの運動生成は、推論時条件付の直感的なステアリング機能を提供するが、しばしば物理的に実行可能な運動を生成するのに失敗する。
対照的に、近年の拡散に基づく制御ポリシーは、物理的に実現可能な運動列を生成することを約束しているが、キネマティックス予測の欠如は、その操舵性を制限している。
Diffuse-CLoCは、これらの課題に、重要な洞察を通して対処する: 単一の拡散モデルにおける状態と行動の連成分布をモデル化することで、予測された状態に条件付けすることで、アクション生成を安定させることができる。
提案手法は,運動を現実的に生成しながら,運動生成から確立した条件付け技術を活用することを可能にする。
その結果,高レベルのプランナを必要とせずに計画能力を実現することができた。
提案手法は,静的および動的障害物回避,移動中移動,タスク空間制御を含む,訓練済みの1つのモデルを用いて,未知の長軸タスクの多種多様な処理を行う。
実験結果から,本手法は,高次運動拡散と低次トラッキングの従来の階層的枠組みを著しく上回ることがわかった。
関連論文リスト
- A Plug-and-Play Physical Motion Restoration Approach for In-the-Wild High-Difficulty Motions [56.709280823844374]
動作コンテキストとビデオマスクを利用して、欠陥のある動作を修復するマスクベースの動作補正モジュール(MCM)を導入する。
また,運動模倣のための事前訓練および適応手法を用いた物理ベースの運動伝達モジュール (PTM) を提案する。
本手法は,高速な移動を含む映像モーションキャプチャ結果を物理的に洗練するためのプラグイン・アンド・プレイモジュールとして設計されている。
論文 参考訳(メタデータ) (2024-12-23T08:26:00Z) - Mojito: Motion Trajectory and Intensity Control for Video Generation [79.85687620761186]
本稿では,テキスト・ビデオ生成のための運動軌跡と強度制御の両方を組み込んだ拡散モデルであるMojitoを紹介する。
実験は, 高精度な軌道制御と強度制御を高い計算効率で実現する上で, モジトの有効性を実証する。
論文 参考訳(メタデータ) (2024-12-12T05:26:43Z) - MotionLCM: Real-time Controllable Motion Generation via Latent Consistency Model [29.93359157128045]
この研究は、制御可能なモーション生成をリアルタイムレベルに拡張するMotionLCMを導入している。
まず,動き潜時拡散モデルに基づいて,動き生成のための動き潜時一貫性モデル(MotionLCM)を提案する。
一段階(もしくは数段階)の推論を採用することにより、動作生成のための動き潜伏拡散モデルの実行効率をさらに向上する。
論文 参考訳(メタデータ) (2024-04-30T17:59:47Z) - FLD: Fourier Latent Dynamics for Structured Motion Representation and
Learning [19.491968038335944]
本研究では,周期的・準周期的な動きの時空間関係を抽出する自己教師付き構造表現生成手法を提案する。
我々の研究は、一般的な動き表現と学習アルゴリズムの今後の進歩への新たな可能性を開く。
論文 参考訳(メタデータ) (2024-02-21T13:59:21Z) - TrackDiffusion: Tracklet-Conditioned Video Generation via Diffusion Models [75.20168902300166]
微粒な軌跡条件の運動制御が可能な新しい映像生成フレームワークであるTrackDiffusionを提案する。
TrackDiffusionの重要なコンポーネントは、複数のオブジェクトのフレーム間の一貫性を明確に保証するインスタンスエンハンサーである。
TrackDiffusionによって生成されたビデオシーケンスは、視覚知覚モデルのトレーニングデータとして使用できる。
論文 参考訳(メタデータ) (2023-12-01T15:24:38Z) - Exploring Model Transferability through the Lens of Potential Energy [78.60851825944212]
トランスファーラーニングは、事前訓練されたディープラーニングモデルが広く利用可能であることから、コンピュータビジョンタスクにおいて重要になっている。
既存のトレーニング済みモデルの転送可能性の測定方法は、符号化された静的特徴とタスクラベルの間の統計的相関に依存する。
我々はこれらの課題に対処するために,PEDという物理に着想を得たアプローチを提案する。
論文 参考訳(メタデータ) (2023-08-29T07:15:57Z) - BoDiffusion: Diffusing Sparse Observations for Full-Body Human Motion
Synthesis [14.331548412833513]
複合現実感アプリケーションは、没入感のある体験を可能にするために、ユーザのフルボディの動きを追跡する必要がある。
本稿では,この非拘束的再構成問題に対処するために,運動合成のための生成拡散モデルであるBoDiffusionを提案する。
本稿では,スムーズで現実的なフルボディモーションシーケンスを生成しつつ,スパーストラッキング入力をBoDiffusionが活用できる時間空間調和方式を提案する。
論文 参考訳(メタデータ) (2023-04-21T16:39:05Z) - Executing your Commands via Motion Diffusion in Latent Space [51.64652463205012]
本研究では,動作遅延に基づく拡散モデル(MLD)を提案し,条件付き入力に対応する鮮明な動き列を生成する。
我々のMDDは、広範囲な人体運動生成タスクにおいて、最先端の手法よりも大幅に改善されている。
論文 参考訳(メタデータ) (2022-12-08T03:07:00Z) - PhysDiff: Physics-Guided Human Motion Diffusion Model [101.1823574561535]
既存の運動拡散モデルは、拡散過程における物理学の法則をほとんど無視する。
PhysDiffは拡散過程に物理的制約を組み込む。
提案手法は,最先端の動作品質を実現し,身体的可視性を大幅に向上させる。
論文 参考訳(メタデータ) (2022-12-05T18:59:52Z) - Learning to Jump from Pixels [23.17535989519855]
我々は、高度にアジャイルな視覚的誘導行動の合成法であるDepth-based Impulse Control (DIC)を提案する。
DICは、モデルフリー学習の柔軟性を提供するが、地面反応力の明示的なモデルベース最適化により、振る舞いを規則化する。
提案手法をシミュレーションと実世界の両方で評価する。
論文 参考訳(メタデータ) (2021-10-28T17:53:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。