論文の概要: Learning to Jump from Pixels
- arxiv url: http://arxiv.org/abs/2110.15344v1
- Date: Thu, 28 Oct 2021 17:53:06 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-02 01:31:43.342201
- Title: Learning to Jump from Pixels
- Title(参考訳): Pixelからジャンプすることを学ぶ
- Authors: Gabriel B. Margolis, Tao Chen, Kartik Paigwar, Xiang Fu, Donghyun Kim,
Sangbae Kim, Pulkit Agrawal
- Abstract要約: 我々は、高度にアジャイルな視覚的誘導行動の合成法であるDepth-based Impulse Control (DIC)を提案する。
DICは、モデルフリー学習の柔軟性を提供するが、地面反応力の明示的なモデルベース最適化により、振る舞いを規則化する。
提案手法をシミュレーションと実世界の両方で評価する。
- 参考スコア(独自算出の注目度): 23.17535989519855
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Today's robotic quadruped systems can robustly walk over a diverse range of
rough but continuous terrains, where the terrain elevation varies gradually.
Locomotion on discontinuous terrains, such as those with gaps or obstacles,
presents a complementary set of challenges. In discontinuous settings, it
becomes necessary to plan ahead using visual inputs and to execute agile
behaviors beyond robust walking, such as jumps. Such dynamic motion results in
significant motion of onboard sensors, which introduces a new set of challenges
for real-time visual processing. The requirement for agility and terrain
awareness in this setting reinforces the need for robust control. We present
Depth-based Impulse Control (DIC), a method for synthesizing highly agile
visually-guided locomotion behaviors. DIC affords the flexibility of model-free
learning but regularizes behavior through explicit model-based optimization of
ground reaction forces. We evaluate the proposed method both in simulation and
in the real world.
- Abstract(参考訳): 今日のロボット四足歩行システムは、地形の標高が徐々に変化する様々な荒地でも連続した地形をロバストに歩くことができる。
隙間や障害物などの不連続な地形での移動は、相補的な課題の集合を示す。
不連続な環境では、視覚的な入力を使用して計画し、ジャンプのような堅牢な歩行を超えたアジャイルの振る舞いを実行する必要がある。
このようなダイナミックな動きは搭載センサーの大きな動きをもたらし、リアルタイムの視覚処理に新たな課題をもたらす。
この環境でのアジリティと地形認識の必要性は、堅牢なコントロールの必要性を補強します。
本研究では,高度にアジャイルな視覚誘導ロコモーション動作を合成する奥行きベースインパルス制御(dic)を提案する。
dicはモデルフリー学習の柔軟性を与えるが、反応力の明示的なモデルに基づく最適化によって振る舞いを規則化する。
提案手法をシミュレーションと実世界の両方で評価する。
関連論文リスト
- FLD: Fourier Latent Dynamics for Structured Motion Representation and
Learning [19.491968038335944]
本研究では,周期的・準周期的な動きの時空間関係を抽出する自己教師付き構造表現生成手法を提案する。
我々の研究は、一般的な動き表現と学習アルゴリズムの今後の進歩への新たな可能性を開く。
論文 参考訳(メタデータ) (2024-02-21T13:59:21Z) - MotionTrack: Learning Motion Predictor for Multiple Object Tracking [68.68339102749358]
本研究では,学習可能なモーション予測器を中心に,新しいモーショントラッカーであるMotionTrackを紹介する。
実験結果から、MotionTrackはDancetrackやSportsMOTといったデータセット上での最先端のパフォーマンスを示す。
論文 参考訳(メタデータ) (2023-06-05T04:24:11Z) - Learning and Adapting Agile Locomotion Skills by Transferring Experience [71.8926510772552]
本稿では,既存のコントローラから新しいタスクを学習するために経験を移譲することで,複雑なロボティクススキルを訓練するためのフレームワークを提案する。
提案手法は,複雑なアジャイルジャンプ行動の学習,後肢を歩いたまま目標地点への移動,新しい環境への適応を可能にする。
論文 参考訳(メタデータ) (2023-04-19T17:37:54Z) - Inverted Landing in a Small Aerial Robot via Deep Reinforcement Learning
for Triggering and Control of Rotational Maneuvers [11.29285364660789]
高速で頑健な逆着陸は、特に機内でのセンシングと計算に完全に依存しながらも、空中ロボットにとって難しい偉業である。
これまでの研究では、一連の視覚的手がかりとキネマティックな動作の間に直接的な因果関係が特定され、小型の空中ロボットでこの困難なエアロバティックな操作を確実に実行することができた。
本研究では、まずDeep Reinforcement Learningと物理シミュレーションを用いて、頑健な逆着陸のための汎用的最適制御ポリシーを得る。
論文 参考訳(メタデータ) (2022-09-22T14:38:10Z) - VAE-Loco: Versatile Quadruped Locomotion by Learning a Disentangled Gait
Representation [78.92147339883137]
本研究では,特定の歩行を構成する主要姿勢位相を捕捉する潜在空間を学習することにより,制御器のロバスト性を高めることが重要であることを示す。
本研究では,ドライブ信号マップの特定の特性が,歩幅,歩幅,立位などの歩行パラメータに直接関係していることを示す。
生成モデルを使用することで、障害の検出と緩和が容易になり、汎用的で堅牢な計画フレームワークを提供する。
論文 参考訳(メタデータ) (2022-05-02T19:49:53Z) - Next Steps: Learning a Disentangled Gait Representation for Versatile
Quadruped Locomotion [69.87112582900363]
現在のプランナーは、ロボットが動いている間、キー歩行パラメータを連続的に変更することはできない。
本研究では、特定の歩行を構成する重要な姿勢位相を捉える潜在空間を学習することにより、この制限に対処する。
本研究では, 歩幅, 歩幅, 立位など, 歩行パラメータに直接対応した駆動信号マップの具体的特性を示す。
論文 参考訳(メタデータ) (2021-12-09T10:02:02Z) - An Adaptable Approach to Learn Realistic Legged Locomotion without
Examples [38.81854337592694]
本研究は,バネ装荷逆振り子モデルを用いて学習プロセスを導くことで,移動における現実性を保証するための汎用的アプローチを提案する。
モデルのない設定であっても、2足歩行ロボットと4足歩行ロボットに対して、学習したポリシーが現実的でエネルギー効率のよい移動歩行を生成できることを示す実験結果を示す。
論文 参考訳(メタデータ) (2021-10-28T10:14:47Z) - Learning Perceptual Locomotion on Uneven Terrains using Sparse Visual
Observations [75.60524561611008]
この研究は、人中心の環境において、よく見られるバンプ、ランプ、階段の広い範囲にわたる知覚的移動を達成するために、スパースな視覚的観察の使用を活用することを目的としている。
まず、関心の均一な面を表すことのできる最小限の視覚入力を定式化し、このような外受容的・固有受容的データを統合した学習フレームワークを提案する。
本研究では, 平地を全方向歩行し, 障害物のある地形を前方移動させるタスクにおいて, 学習方針を検証し, 高い成功率を示す。
論文 参考訳(メタデータ) (2021-09-28T20:25:10Z) - Reinforcement Learning for Robust Parameterized Locomotion Control of
Bipedal Robots [121.42930679076574]
シミュレーションにおけるロコモーションポリシをトレーニングするためのモデルフリー強化学習フレームワークを提案する。
ドメインランダム化は、システムダイナミクスのバリエーションにまたがる堅牢な振る舞いを学ぶためのポリシーを奨励するために使用されます。
本研究では、目標歩行速度、歩行高さ、旋回ヨーなどの多目的歩行行動について示す。
論文 参考訳(メタデータ) (2021-03-26T07:14:01Z) - RLOC: Terrain-Aware Legged Locomotion using Reinforcement Learning and
Optimal Control [6.669503016190925]
四元計画と制御のためのモデルベースとデータ駆動の統一的アプローチを提案する。
センサ情報と所望のベース速度コマンドを、強化学習ポリシーを用いて足踏み計画にマッピングする。
我々は、複雑な四足歩行システムであるANYmal Bの枠組みを訓練し、再訓練を必要とせず、より大きく重いロボットであるANYmal Cへの移動性を示す。
論文 参考訳(メタデータ) (2020-12-05T18:30:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。