論文の概要: OpeNLGauge: An Explainable Metric for NLG Evaluation with Open-Weights LLMs
- arxiv url: http://arxiv.org/abs/2503.11858v1
- Date: Fri, 14 Mar 2025 20:38:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-18 16:00:14.517010
- Title: OpeNLGauge: An Explainable Metric for NLG Evaluation with Open-Weights LLMs
- Title(参考訳): OpeNLGauge: オープンウェイトLLMによるNLG評価のための説明可能なメトリクス
- Authors: Ivan Kartáč, Mateusz Lango, Ondřej Dušek,
- Abstract要約: OpeNLGaugeは、完全にオープンソースで参照不要なNLG評価指標であり、エラースパンに基づいた正確な説明を提供する。
我々はOpeNLGaugeが人間の判断と競合する相関を達成し、特定のタスクにおける最先端モデルより優れていることを示す。
- 参考スコア(独自算出の注目度): 1.8434042562191815
- License:
- Abstract: Large Language Models (LLMs) have demonstrated great potential as evaluators of NLG systems, allowing for high-quality, reference-free, and multi-aspect assessments. However, existing LLM-based metrics suffer from two major drawbacks: reliance on proprietary models to generate training data or perform evaluations, and a lack of fine-grained, explanatory feedback. In this paper, we introduce OpeNLGauge, a fully open-source, reference-free NLG evaluation metric that provides accurate explanations based on error spans. OpeNLGauge is available as a two-stage ensemble of larger open-weight LLMs, or as a small fine-tuned evaluation model, with confirmed generalizability to unseen tasks, domains and aspects. Our extensive meta-evaluation shows that OpeNLGauge achieves competitive correlation with human judgments, outperforming state-of-the-art models on certain tasks while maintaining full reproducibility and providing explanations more than twice as accurate.
- Abstract(参考訳): LLM(Large Language Models)は、NLGシステムの評価器として大きな可能性を示し、高品質、参照なし、マルチアスペクトアセスメントを可能にしている。
しかし、既存のLCMベースのメトリクスには、トレーニングデータの生成や評価を行うためのプロプライエタリなモデルへの依存、詳細な説明的フィードバックの欠如という2つの大きな欠点がある。
本稿では,完全にオープンソースで参照不要なNLG評価指標であるOpeNLGaugeを紹介する。
OpeNLGauge は、より大きなオープンウェイト LLM の2段階アンサンブルとして、または小さな微調整された評価モデルとして利用可能であり、未確認タスク、ドメイン、アスペクトに対する一般化性が確認されている。
我々は,OpeNLGaugeが人間の判断と競合する相関を達成し,再現性を維持しつつ,精度を2倍以上に向上することを示す。
関連論文リスト
- LLaVA-Critic: Learning to Evaluate Multimodal Models [110.06665155812162]
本稿では,LLaVA-Criticについて紹介する。LLaVA-Criticは,汎用評価器として設計された,最初のオープンソースの大規模マルチモーダルモデル(LMM)である。
LLaVA-Criticは、さまざまな評価基準とシナリオを組み込んだ高品質な批判的インストラクションフォローデータセットを使用してトレーニングされている。
論文 参考訳(メタデータ) (2024-10-03T17:36:33Z) - LLMs instead of Human Judges? A Large Scale Empirical Study across 20 NLP Evaluation Tasks [106.09361690937618]
人間の判断の代わりにLPMを用いてNLPモデルを評価する傾向が高まっている。
JUDGE-BENCHは20個のNLPデータセットのコレクションで、人間のアノテーションで、幅広い評価された特性やデータの種類をカバーしています。
アノテーションを複製できるため、オープンウェイトモデルとプロプライエタリモデルの両方をカバーする11の現在のLCMを評価します。
論文 参考訳(メタデータ) (2024-06-26T14:56:13Z) - Themis: A Reference-free NLG Evaluation Language Model with Flexibility and Interpretability [39.12792986841385]
本稿では,人間とGPT-4のアノテーションを用いた大規模NLG評価コーパスNLG-Evalを構築した。
また,NLG 評価専用の LLM を提案する。この LLM は,設計した多視点整合性検証と評価指向の選好アライメント手法を用いて訓練されている。
Themis は様々な NLG タスクに対して優れた評価性能を示し、同時に未確認タスクを一般化し、GPT-4 など他の評価モデルを上回っている。
論文 参考訳(メタデータ) (2024-06-26T14:04:29Z) - VALOR-EVAL: Holistic Coverage and Faithfulness Evaluation of Large Vision-Language Models [57.43276586087863]
LVLM(Large Vision-Language Models)は幻覚に悩まされ、このモデルでは可聴音を発生させるが、実際には誤出力を発生させる。
既存のベンチマークはスコープに限られており、主にオブジェクト幻覚に焦点を当てている。
対象,属性,関係を多次元のベンチマークで表現し,連想バイアスに基づいて画像を選択する。
論文 参考訳(メタデータ) (2024-04-22T04:49:22Z) - Leveraging Large Language Models for NLG Evaluation: Advances and Challenges [57.88520765782177]
大規模言語モデル(LLM)は、コヒーレンス、クリエイティビティ、コンテキスト関連など、生成されたコンテンツ品質を評価するための新たな道を開いた。
既存のLCMに基づく評価指標を整理し、これらの手法を理解し比較するための構造化された枠組みを提供する。
本稿では, 偏見, 堅牢性, ドメイン固有性, 統一評価などの未解決課題を議論することによって, 研究者に洞察を提供し, より公平で高度なNLG評価手法を提唱することを目的とする。
論文 参考訳(メタデータ) (2024-01-13T15:59:09Z) - Which is better? Exploring Prompting Strategy For LLM-based Metrics [6.681126871165601]
本稿では,DSBA が提案する Prompting Large Language Models を Explainable Metrics 共有タスクとして記述する。
BLEUやROUGEのような従来の類似性に基づくメトリクスは、人間の評価に悪影響を与えており、オープンな生成タスクには適していない。
論文 参考訳(メタデータ) (2023-11-07T06:36:39Z) - G-Eval: NLG Evaluation using GPT-4 with Better Human Alignment [64.01972723692587]
本稿では,大規模言語モデルにチェーン・オブ・シント(CoT)を組み込んだフレームワークであるG-Evalと,NLG出力の品質評価のためのフォームフィリングパラダイムを提案する。
GPT-4 をバックボーンモデルとした G-Eval は,要約タスクにおいて,0.514 と人間とのスピアマン相関を達成し,従来手法の差を大きく上回ることを示す。
論文 参考訳(メタデータ) (2023-03-29T12:46:54Z) - Benchmarking Large Language Models for News Summarization [79.37850439866938]
大規模言語モデル(LLM)は自動要約を約束しているが、その成功の背景にある理由はよく分かっていない。
LLMのゼロショット要約能力の鍵は、モデルサイズではなく、命令チューニングにある。
論文 参考訳(メタデータ) (2023-01-31T18:46:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。