FedALT: Federated Fine-Tuning through Adaptive Local Training with Rest-of-the-World LoRA
- URL: http://arxiv.org/abs/2503.11880v1
- Date: Fri, 14 Mar 2025 21:07:46 GMT
- Title: FedALT: Federated Fine-Tuning through Adaptive Local Training with Rest-of-the-World LoRA
- Authors: Jieming Bian, Lei Wang, Letian Zhang, Jie Xu,
- Abstract summary: Fine-tuning large language models (LLMs) in federated settings enables privacy-preserving adaptation but suffers from cross-client interference due to model aggregation.<n>We propose textbfFedALT, a novel personalized federated LoRA fine-tuning algorithm.<n>We show that FedALT significantly outperforms state-of-the-art personalized federated LoRA fine-tuning methods.
- Score: 5.162783756846019
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Fine-tuning large language models (LLMs) in federated settings enables privacy-preserving adaptation but suffers from cross-client interference due to model aggregation. Existing federated LoRA fine-tuning methods, primarily based on FedAvg, struggle with data heterogeneity, leading to harmful cross-client interference and suboptimal personalization. In this work, we propose \textbf{FedALT}, a novel personalized federated LoRA fine-tuning algorithm that fundamentally departs from FedAvg. Instead of using an aggregated model to initialize local training, each client continues training its individual LoRA while incorporating shared knowledge through a separate Rest-of-the-World (RoTW) LoRA component. To effectively balance local adaptation and global information, FedALT introduces an adaptive mixer that dynamically learns input-specific weightings between the individual and RoTW LoRA components using the Mixture-of-Experts (MoE) principle. Through extensive experiments on NLP benchmarks, we demonstrate that FedALT significantly outperforms state-of-the-art personalized federated LoRA fine-tuning methods, achieving superior local adaptation without sacrificing computational efficiency.
Related papers
- LoRA-FAIR: Federated LoRA Fine-Tuning with Aggregation and Initialization Refinement [5.162783756846019]
Foundation models (FMs) achieve strong performance across diverse tasks with task-specific fine-tuning.<n>Low-Rank Adaptation (LoRA) methods like Low-Rank Adaptation (LoRA) reduce this cost by introducing low-rank matrices for tuning fewer parameters.<n>LoRA-FAIR maintains computational and communication efficiency, yielding superior performance over state-of-the-art methods.
arXiv Detail & Related papers (2024-11-22T14:19:01Z) - FedEx-LoRA: Exact Aggregation for Federated and Efficient Fine-Tuning of Foundation Models [5.1613368481802455]
Low-Rank Adaptation (LoRA) is a popular technique for efficient fine-tuning of foundation models.<n>We propose Federated Exact LoRA, or FedEx-LoRA, which adds a residual error term to the pretrained frozen weight matrix.<n>Our approach achieves exact updates with minimal computational and communication overhead, preserving LoRA's efficiency.
arXiv Detail & Related papers (2024-10-12T08:22:44Z) - FLoRA: Federated Fine-Tuning Large Language Models with Heterogeneous Low-Rank Adaptations [39.88985198467528]
We introduce a new approach called FLORA that enables federated fine-tuning on heterogeneous LoRA adapters.
Our approach is noise-free and seamlessly supports heterogeneous LoRA adapters.
arXiv Detail & Related papers (2024-09-09T18:21:23Z) - Federated LoRA with Sparse Communication [12.965591289179372]
Low-rank adaptation (LoRA) is a natural method for finetuning in communication-constrained machine learning settings.
In this work, we consider techniques for further improving communication-efficiency in federated LoRA.
arXiv Detail & Related papers (2024-06-07T19:42:05Z) - Locally Estimated Global Perturbations are Better than Local Perturbations for Federated Sharpness-aware Minimization [81.32266996009575]
In federated learning (FL), the multi-step update and data heterogeneity among clients often lead to a loss landscape with sharper minima.
We propose FedLESAM, a novel algorithm that locally estimates the direction of global perturbation on client side.
arXiv Detail & Related papers (2024-05-29T08:46:21Z) - FedLoGe: Joint Local and Generic Federated Learning under Long-tailed
Data [46.29190753993415]
Federated Long-Tailed Learning (Fed-LT) is a paradigm wherein data collected from decentralized local clients manifests a globally prevalent long-tailed distribution.
This paper introduces an approach termed Federated Local and Generic Model Training in Fed-LT (FedLoGe), which enhances both local and generic model performance.
arXiv Detail & Related papers (2024-01-17T05:04:33Z) - Heterogeneous LoRA for Federated Fine-tuning of On-Device Foundation
Models [20.707283766914017]
HetLoRA allows heterogeneous ranks across client devices and efficiently aggregates and distributes these heterogeneous LoRA modules.
HetLoRA achieves improved convergence speed and final performance compared to homogeneous LoRA.
arXiv Detail & Related papers (2024-01-12T07:52:07Z) - FedRA: A Random Allocation Strategy for Federated Tuning to Unleash the
Power of Heterogeneous Clients [50.13097183691517]
In real-world federated scenarios, there often exist a multitude of heterogeneous clients with varying computation and communication resources.
We propose a novel federated tuning algorithm, FedRA.
In each communication round, FedRA randomly generates an allocation matrix.
It reorganizes a small number of layers from the original model based on the allocation matrix and fine-tunes using adapters.
arXiv Detail & Related papers (2023-11-19T04:43:16Z) - pFedLoRA: Model-Heterogeneous Personalized Federated Learning with LoRA
Tuning [35.59830784463706]
Federated learning (FL) is an emerging machine learning paradigm in which a central server coordinates multiple participants (clients) collaboratively to train on decentralized data.
We propose a novel and efficient model-heterogeneous personalized Federated learning framework based on LoRA tuning (pFedLoRA)
Experiments on two benchmark datasets demonstrate that pFedLoRA outperforms six state-of-the-art baselines.
arXiv Detail & Related papers (2023-10-20T05:24:28Z) - Rethinking Client Drift in Federated Learning: A Logit Perspective [125.35844582366441]
Federated Learning (FL) enables multiple clients to collaboratively learn in a distributed way, allowing for privacy protection.
We find that the difference in logits between the local and global models increases as the model is continuously updated.
We propose a new algorithm, named FedCSD, a Class prototype Similarity Distillation in a federated framework to align the local and global models.
arXiv Detail & Related papers (2023-08-20T04:41:01Z) - Towards More Suitable Personalization in Federated Learning via
Decentralized Partial Model Training [67.67045085186797]
Almost all existing systems have to face large communication burdens if the central FL server fails.
It personalizes the "right" in the deep models by alternately updating the shared and personal parameters.
To further promote the shared parameters aggregation process, we propose DFed integrating the local Sharpness Miniization.
arXiv Detail & Related papers (2023-05-24T13:52:18Z) - Beyond ADMM: A Unified Client-variance-reduced Adaptive Federated
Learning Framework [82.36466358313025]
We propose a primal-dual FL algorithm, termed FedVRA, that allows one to adaptively control the variance-reduction level and biasness of the global model.
Experiments based on (semi-supervised) image classification tasks demonstrate superiority of FedVRA over the existing schemes.
arXiv Detail & Related papers (2022-12-03T03:27:51Z) - Acceleration of Federated Learning with Alleviated Forgetting in Local
Training [61.231021417674235]
Federated learning (FL) enables distributed optimization of machine learning models while protecting privacy.
We propose FedReg, an algorithm to accelerate FL with alleviated knowledge forgetting in the local training stage.
Our experiments demonstrate that FedReg not only significantly improves the convergence rate of FL, especially when the neural network architecture is deep.
arXiv Detail & Related papers (2022-03-05T02:31:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.