k-fold Subsampling based Sequential Backward Feature Elimination
- URL: http://arxiv.org/abs/2503.11919v1
- Date: Fri, 14 Mar 2025 23:10:08 GMT
- Title: k-fold Subsampling based Sequential Backward Feature Elimination
- Authors: Jeonghwan Park, Kang Li, Huiyu Zhou,
- Abstract summary: This algorithm is a hybrid feature selection approach combining the benefits of filter and wrapper methods.<n>It can improve the detection speed of the SVM classifier by over 50% with up to 2% better detection accuracy.<n>Our algorithm also outperforms the equivalent systems introduced in the deformable part model approach with around 9% improvement in the detection accuracy.
- Score: 11.640238391159118
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a new wrapper feature selection algorithm for human detection. This algorithm is a hybrid feature selection approach combining the benefits of filter and wrapper methods. It allows the selection of an optimal feature vector that well represents the shapes of the subjects in the images. In detail, the proposed feature selection algorithm adopts the k-fold subsampling and sequential backward elimination approach, while the standard linear support vector machine (SVM) is used as the classifier for human detection. We apply the proposed algorithm to the publicly accessible INRIA and ETH pedestrian full image datasets with the PASCAL VOC evaluation criteria. Compared to other state of the arts algorithms, our feature selection based approach can improve the detection speed of the SVM classifier by over 50% with up to 2% better detection accuracy. Our algorithm also outperforms the equivalent systems introduced in the deformable part model approach with around 9% improvement in the detection accuracy.
Related papers
- Feature Selection as Deep Sequential Generative Learning [50.00973409680637]
We develop a deep variational transformer model over a joint of sequential reconstruction, variational, and performance evaluator losses.
Our model can distill feature selection knowledge and learn a continuous embedding space to map feature selection decision sequences into embedding vectors associated with utility scores.
arXiv Detail & Related papers (2024-03-06T16:31:56Z) - An efficient hybrid classification approach for COVID-19 based on Harris
Hawks Optimization and Salp Swarm Optimization [0.0]
This study presents a hybrid binary version of the Harris Hawks Optimization algorithm (HHO) and Salp Swarm Optimization (SSA) for Covid-19 classification.
The proposed algorithm (HHOSSA) achieved 96% accuracy with the SVM, 98% and 98% accuracy with two classifiers.
arXiv Detail & Related papers (2022-12-25T19:52:18Z) - New wrapper method based on normalized mutual information for dimension
reduction and classification of hyperspectral images [0.0]
We propose a new wrapper method based on normalized mutual information (NMI) and error probability (PE)
Experiments have been performed on two challenging hyperspectral benchmarks datasets captured by the NASA's Airborne Visible/Infrared Imaging Spectrometer Sensor (AVIRIS)
arXiv Detail & Related papers (2022-10-25T21:17:11Z) - Efficient Non-Parametric Optimizer Search for Diverse Tasks [93.64739408827604]
We present the first efficient scalable and general framework that can directly search on the tasks of interest.
Inspired by the innate tree structure of the underlying math expressions, we re-arrange the spaces into a super-tree.
We adopt an adaptation of the Monte Carlo method to tree search, equipped with rejection sampling and equivalent- form detection.
arXiv Detail & Related papers (2022-09-27T17:51:31Z) - A Tent L\'evy Flying Sparrow Search Algorithm for Feature Selection: A
COVID-19 Case Study [1.6436293069942312]
The "Curse of Dimensionality" induced by the rapid development of information science might have a negative impact when dealing with big datasets.
We propose a variant of the sparrow search algorithm (SSA), called Tent L'evy flying sparrow search algorithm (TFSSA)
TFSSA is used to select the best subset of features in the packing pattern for classification purposes.
arXiv Detail & Related papers (2022-09-20T15:12:10Z) - Per-run Algorithm Selection with Warm-starting using Trajectory-based
Features [5.073358743426584]
Per-instance algorithm selection seeks to recommend, for a given problem instance, one or several suitable algorithms.
We propose an online algorithm selection scheme which we coin per-run algorithm selection.
We show that our approach outperforms static per-instance algorithm selection.
arXiv Detail & Related papers (2022-04-20T14:30:42Z) - Machine Learning for Online Algorithm Selection under Censored Feedback [71.6879432974126]
In online algorithm selection (OAS), instances of an algorithmic problem class are presented to an agent one after another, and the agent has to quickly select a presumably best algorithm from a fixed set of candidate algorithms.
For decision problems such as satisfiability (SAT), quality typically refers to the algorithm's runtime.
In this work, we revisit multi-armed bandit algorithms for OAS and discuss their capability of dealing with the problem.
We adapt them towards runtime-oriented losses, allowing for partially censored data while keeping a space- and time-complexity independent of the time horizon.
arXiv Detail & Related papers (2021-09-13T18:10:52Z) - A concise method for feature selection via normalized frequencies [0.0]
In this paper, a concise method is proposed for universal feature selection.
The proposed method uses a fusion of the filter method and the wrapper method, rather than a combination of them.
The evaluation results show that the proposed method outperformed several state-of-the-art related works in terms of accuracy, precision, recall, F-score and AUC.
arXiv Detail & Related papers (2021-06-10T15:29:54Z) - Adaptive Sampling for Best Policy Identification in Markov Decision
Processes [79.4957965474334]
We investigate the problem of best-policy identification in discounted Markov Decision (MDPs) when the learner has access to a generative model.
The advantages of state-of-the-art algorithms are discussed and illustrated.
arXiv Detail & Related papers (2020-09-28T15:22:24Z) - A Systematic Characterization of Sampling Algorithms for Open-ended
Language Generation [71.31905141672529]
We study the widely adopted ancestral sampling algorithms for auto-regressive language models.
We identify three key properties that are shared among them: entropy reduction, order preservation, and slope preservation.
We find that the set of sampling algorithms that satisfies these properties performs on par with the existing sampling algorithms.
arXiv Detail & Related papers (2020-09-15T17:28:42Z) - Extreme Algorithm Selection With Dyadic Feature Representation [78.13985819417974]
We propose the setting of extreme algorithm selection (XAS) where we consider fixed sets of thousands of candidate algorithms.
We assess the applicability of state-of-the-art AS techniques to the XAS setting and propose approaches leveraging a dyadic feature representation.
arXiv Detail & Related papers (2020-01-29T09:40:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.