End-to-End Edge AI Service Provisioning Framework in 6G ORAN
- URL: http://arxiv.org/abs/2503.11933v1
- Date: Sat, 15 Mar 2025 00:48:50 GMT
- Title: End-to-End Edge AI Service Provisioning Framework in 6G ORAN
- Authors: Yun Tang, Udhaya Chandhar Srinivasan, Benjamin James Scott, Obumneme Umealor, Dennis Kevogo, Weisi Guo,
- Abstract summary: This paper proposes a novel Edge AI and Network Service Orchestration framework that leverages Large Language Model (LLM) agents deployed as O-RAN rApps.<n>The proposed LLM-agent-powered system enables interactive and intuitive orchestration by translating the user's use case description into deployable AI services and corresponding network configurations.
- Score: 7.6934511825411045
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the advent of 6G, Open Radio Access Network (O-RAN) architectures are evolving to support intelligent, adaptive, and automated network orchestration. This paper proposes a novel Edge AI and Network Service Orchestration framework that leverages Large Language Model (LLM) agents deployed as O-RAN rApps. The proposed LLM-agent-powered system enables interactive and intuitive orchestration by translating the user's use case description into deployable AI services and corresponding network configurations. The LLM agent automates multiple tasks, including AI model selection from repositories (e.g., Hugging Face), service deployment, network adaptation, and real-time monitoring via xApps. We implement a prototype using open-source O-RAN projects (OpenAirInterface and FlexRIC) to demonstrate the feasibility and functionality of our framework. Our demonstration showcases the end-to-end flow of AI service orchestration, from user interaction to network adaptation, ensuring Quality of Service (QoS) compliance. This work highlights the potential of integrating LLM-driven automation into 6G O-RAN ecosystems, paving the way for more accessible and efficient edge AI ecosystems.
Related papers
- Building AI Service Repositories for On-Demand Service Orchestration in 6G AI-RAN [7.375775031391254]
This paper systematically identifies and categorizes critical attributes influencing AI service orchestration in 6G networks.
We introduce an open-source, LLM-assisted toolchain that automates service packaging, deployment, and runtime profiling.
arXiv Detail & Related papers (2025-04-13T16:40:58Z) - Towards Agentic AI Networking in 6G: A Generative Foundation Model-as-Agent Approach [35.05793485239977]
We propose AgentNet, a novel framework for supporting interaction, collaborative learning, and knowledge transfer among AI agents.
We consider two application scenarios, digital-twin-based industrial automation and metaverse-based infotainment system, to describe how to apply AgentNet.
arXiv Detail & Related papers (2025-03-20T00:48:44Z) - Intelligent Mobile AI-Generated Content Services via Interactive Prompt Engineering and Dynamic Service Provisioning [55.641299901038316]
AI-generated content can organize collaborative Mobile AIGC Service Providers (MASPs) at network edges to provide ubiquitous and customized content for resource-constrained users.
Such a paradigm faces two significant challenges: 1) raw prompts often lead to poor generation quality due to users' lack of experience with specific AIGC models, and 2) static service provisioning fails to efficiently utilize computational and communication resources.
We develop an interactive prompt engineering mechanism that leverages a Large Language Model (LLM) to generate customized prompt corpora and employs Inverse Reinforcement Learning (IRL) for policy imitation.
arXiv Detail & Related papers (2025-02-17T03:05:20Z) - AutoGLM: Autonomous Foundation Agents for GUIs [51.276965515952]
We present AutoGLM, a new series in the ChatGLM family, designed to serve as foundation agents for autonomous control of digital devices through Graphical User Interfaces (GUIs)
We have developed AutoGLM as a practical foundation agent system for real-world GUI interactions.
Our evaluations demonstrate AutoGLM's effectiveness across multiple domains.
arXiv Detail & Related papers (2024-10-28T17:05:10Z) - Internet of Agents: Weaving a Web of Heterogeneous Agents for Collaborative Intelligence [79.5316642687565]
Existing multi-agent frameworks often struggle with integrating diverse capable third-party agents.
We propose the Internet of Agents (IoA), a novel framework that addresses these limitations.
IoA introduces an agent integration protocol, an instant-messaging-like architecture design, and dynamic mechanisms for agent teaming and conversation flow control.
arXiv Detail & Related papers (2024-07-09T17:33:24Z) - ROS-LLM: A ROS framework for embodied AI with task feedback and structured reasoning [74.58666091522198]
We present a framework for intuitive robot programming by non-experts.
We leverage natural language prompts and contextual information from the Robot Operating System (ROS)
Our system integrates large language models (LLMs), enabling non-experts to articulate task requirements to the system through a chat interface.
arXiv Detail & Related papers (2024-06-28T08:28:38Z) - Exploiting and Securing ML Solutions in Near-RT RIC: A Perspective of an xApp [9.199924426745948]
Open Radio Access Networks (O-RAN) are emerging as a disruptive technology.
O-RAN is attractive to network providers for beyond-5G and 6G deployments.
The ability to deploy custom applications, including Machine Learning (ML) solutions as xApps or rApps on the RAN Intelligent Controllers (RICs) has immense potential for network function and resource optimisation.
However, the openness, nascent standards, and distributed architecture of O-RAN and RICs introduce numerous vulnerabilities exploitable through multiple attack vectors.
arXiv Detail & Related papers (2024-06-18T06:12:57Z) - When Large Language Model Agents Meet 6G Networks: Perception,
Grounding, and Alignment [100.58938424441027]
We propose a split learning system for AI agents in 6G networks leveraging the collaboration between mobile devices and edge servers.
We introduce a novel model caching algorithm for LLMs within the proposed system to improve model utilization in context.
arXiv Detail & Related papers (2024-01-15T15:20:59Z) - LLMind: Orchestrating AI and IoT with LLM for Complex Task Execution [18.816077341295628]
We present LLMind, a task-oriented AI framework that enables effective collaboration among IoT devices.
Inspired by the functional specialization theory of the brain, our framework integrates an LLM with domain-specific AI modules.
Complex tasks, which may involve collaborations of multiple domain-specific AI modules and IoT devices, are executed through a control script.
arXiv Detail & Related papers (2023-12-14T14:57:58Z) - Toward 6G Native-AI Network: Foundation Model based Cloud-Edge-End Collaboration Framework [55.73948386625618]
We analyze the challenges of achieving 6G native AI from perspectives of data, AI models, and operational paradigm.
We propose a 6G native AI framework based on foundation models, provide an integration method for the expert knowledge, present the customization for two kinds of PFM, and outline a novel operational paradigm for the native AI framework.
arXiv Detail & Related papers (2023-10-26T15:19:40Z) - Actor-Critic Network for O-RAN Resource Allocation: xApp Design,
Deployment, and Analysis [3.8073142980733]
Open Radio Access Network (O-RAN) has introduced an emerging RAN architecture that enables openness, intelligence, and automated control.
The RAN Intelligent Controller (RIC) provides the platform to design and deploy RAN controllers.
xApps are the applications which will take this responsibility by leveraging machine learning (ML) algorithms and acting in near-real time.
arXiv Detail & Related papers (2022-09-26T19:12:18Z) - OrchestRAN: Network Automation through Orchestrated Intelligence in the
Open RAN [27.197110488665157]
We present and prototyping OrchestRAN, a novel orchestration framework for network intelligence.
OrchestRAN has been designed to execute in the non-real-time RAN Intelligent Controller (RIC) and allows Network Operators (NOs) to specify high-level control/inference objectives.
We show that the problem of orchestrating intelligence in Open RAN is NP-hard, and design low-complexity solutions to support real-world applications.
arXiv Detail & Related papers (2022-01-14T19:20:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.