Your Text Encoder Can Be An Object-Level Watermarking Controller
- URL: http://arxiv.org/abs/2503.11945v1
- Date: Sat, 15 Mar 2025 01:35:39 GMT
- Title: Your Text Encoder Can Be An Object-Level Watermarking Controller
- Authors: Naresh Kumar Devulapally, Mingzhen Huang, Vishal Asnani, Shruti Agarwal, Siwei Lyu, Vishnu Suresh Lokhande,
- Abstract summary: We present a novel approach to watermark images of T2I Latent Diffusion Models (LDMs)<n>By only fine-tuning text token embeddings $W_*$, we enable watermarking in selected objects or parts of the image, offering greater flexibility compared to traditional full-image watermarking.<n>Our approach achieves $99%$ bit accuracy ($48$ bits) with a $105 times$ reduction in model parameters, enabling efficient watermarking.
- Score: 31.003510691494473
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Invisible watermarking of AI-generated images can help with copyright protection, enabling detection and identification of AI-generated media. In this work, we present a novel approach to watermark images of T2I Latent Diffusion Models (LDMs). By only fine-tuning text token embeddings $W_*$, we enable watermarking in selected objects or parts of the image, offering greater flexibility compared to traditional full-image watermarking. Our method leverages the text encoder's compatibility across various LDMs, allowing plug-and-play integration for different LDMs. Moreover, introducing the watermark early in the encoding stage improves robustness to adversarial perturbations in later stages of the pipeline. Our approach achieves $99\%$ bit accuracy ($48$ bits) with a $10^5 \times$ reduction in model parameters, enabling efficient watermarking.
Related papers
- Speech Watermarking with Discrete Intermediate Representations [45.892635912641836]
We propose a novel speech watermarking framework that injects watermarks into the discrete intermediate representations of speech.<n>DiscreteWM achieves state-of-the-art performance in robustness and imperceptibility, simultaneously.<n>Our flexible frame-wise approach can serve as an efficient solution for both voice cloning detection and information hiding.
arXiv Detail & Related papers (2024-12-18T14:57:06Z) - Watermark Smoothing Attacks against Language Models [40.02225709485305]
We introduce the Smoothing Attack, a novel watermark removal method.
We validate our attack on open-source models ranging from $1.3$B to $30$B parameters.
arXiv Detail & Related papers (2024-07-19T11:04:54Z) - DiffuseTrace: A Transparent and Flexible Watermarking Scheme for Latent Diffusion Model [15.982765272033058]
Latent Diffusion Models (LDMs) enable a wide range of applications but raise ethical concerns regarding illegal utilization.
New technique called DiffuseTrace embeds invisible watermarks in all generated images for future detection semantically.
arXiv Detail & Related papers (2024-05-04T15:32:57Z) - Latent Watermark: Inject and Detect Watermarks in Latent Diffusion Space [7.082806239644562]
Existing methods face the dilemma of image quality and watermark robustness.
Watermarks with superior image quality usually have inferior robustness against attacks such as blurring and JPEG compression.
We propose Latent Watermark, which injects and detects watermarks in the latent diffusion space.
arXiv Detail & Related papers (2024-03-30T03:19:50Z) - Multi-Bit Distortion-Free Watermarking for Large Language Models [4.7381853007029475]
We extend an existing zero-bit distortion-free watermarking method by embedding multiple bits of meta-information as part of the watermark.
We also develop a computationally efficient decoder that extracts the embedded information from the watermark with low bit error rate.
arXiv Detail & Related papers (2024-02-26T14:01:34Z) - RAW: A Robust and Agile Plug-and-Play Watermark Framework for AI-Generated Images with Provable Guarantees [33.61946642460661]
This paper introduces a robust and agile watermark detection framework, dubbed as RAW.
We employ a classifier that is jointly trained with the watermark to detect the presence of the watermark.
We show that the framework provides provable guarantees regarding the false positive rate for misclassifying a watermarked image.
arXiv Detail & Related papers (2024-01-23T22:00:49Z) - FT-Shield: A Watermark Against Unauthorized Fine-tuning in Text-to-Image Diffusion Models [64.89896692649589]
We propose FT-Shield, a watermarking solution tailored for the fine-tuning of text-to-image diffusion models.
FT-Shield addresses copyright protection challenges by designing new watermark generation and detection strategies.
arXiv Detail & Related papers (2023-10-03T19:50:08Z) - An Unforgeable Publicly Verifiable Watermark for Large Language Models [84.2805275589553]
Current watermark detection algorithms require the secret key used in the watermark generation process, making them susceptible to security breaches and counterfeiting during public detection.
We propose an unforgeable publicly verifiable watermark algorithm named UPV that uses two different neural networks for watermark generation and detection, instead of using the same key at both stages.
arXiv Detail & Related papers (2023-07-30T13:43:27Z) - Robust Distortion-free Watermarks for Language Models [85.55407177530746]
We propose a methodology for planting watermarks in text from an autoregressive language model.
We generate watermarked text by mapping a sequence of random numbers to a sample from the language model.
arXiv Detail & Related papers (2023-07-28T14:52:08Z) - Tree-Ring Watermarks: Fingerprints for Diffusion Images that are
Invisible and Robust [55.91987293510401]
Watermarking the outputs of generative models is a crucial technique for tracing copyright and preventing potential harm from AI-generated content.
We introduce a novel technique called Tree-Ring Watermarking that robustly fingerprints diffusion model outputs.
Our watermark is semantically hidden in the image space and is far more robust than watermarking alternatives that are currently deployed.
arXiv Detail & Related papers (2023-05-31T17:00:31Z) - A Watermark for Large Language Models [84.95327142027183]
We propose a watermarking framework for proprietary language models.
The watermark can be embedded with negligible impact on text quality.
It can be detected using an efficient open-source algorithm without access to the language model API or parameters.
arXiv Detail & Related papers (2023-01-24T18:52:59Z) - Watermarking Images in Self-Supervised Latent Spaces [75.99287942537138]
We revisit watermarking techniques based on pre-trained deep networks, in the light of self-supervised approaches.
We present a way to embed both marks and binary messages into their latent spaces, leveraging data augmentation at marking time.
arXiv Detail & Related papers (2021-12-17T15:52:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.