論文の概要: Hydra-NeXt: Robust Closed-Loop Driving with Open-Loop Training
- arxiv url: http://arxiv.org/abs/2503.12030v1
- Date: Sat, 15 Mar 2025 07:42:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-18 12:29:23.556158
- Title: Hydra-NeXt: Robust Closed-Loop Driving with Open-Loop Training
- Title(参考訳): Hydra-NeXt: オープンループトレーニングによるロバスト閉ループ運転
- Authors: Zhenxin Li, Shihao Wang, Shiyi Lan, Zhiding Yu, Zuxuan Wu, Jose M. Alvarez,
- Abstract要約: Hydra-NeXtは、軌道予測、制御予測、軌道修正ネットワークを一つのモデルに統合する、新しいマルチブランチ計画フレームワークである。
Hydra-NeXt は22.98 DS と 17.49 SR を上回り、自動運転の大幅な進歩を示している。
- 参考スコア(独自算出の注目度): 64.16445087751039
- License:
- Abstract: End-to-end autonomous driving research currently faces a critical challenge in bridging the gap between open-loop training and closed-loop deployment. Current approaches are trained to predict trajectories in an open-loop environment, which struggle with quick reactions to other agents in closed-loop environments and risk generating kinematically infeasible plans due to the gap between open-loop training and closed-loop driving. In this paper, we introduce Hydra-NeXt, a novel multi-branch planning framework that unifies trajectory prediction, control prediction, and a trajectory refinement network in one model. Unlike current open-loop trajectory prediction models that only handle general-case planning, Hydra-NeXt further utilizes a control decoder to focus on short-term actions, which enables faster responses to dynamic situations and reactive agents. Moreover, we propose the Trajectory Refinement module to augment and refine the planning decisions by effectively adhering to kinematic constraints in closed-loop environments. This unified approach bridges the gap between open-loop training and closed-loop driving, demonstrating superior performance of 65.89 Driving Score (DS) and 48.20% Success Rate (SR) on the Bench2Drive dataset without relying on external experts for data collection. Hydra-NeXt surpasses the previous state-of-the-art by 22.98 DS and 17.49 SR, marking a significant advancement in autonomous driving. Code will be available at https://github.com/woxihuanjiangguo/Hydra-NeXt.
- Abstract(参考訳): エンドツーエンドの自動運転研究は現在、オープンループトレーニングとクローズドループデプロイメントのギャップを埋める上で重要な課題に直面している。
クローズドループ環境における他のエージェントへの迅速な反応と、クローズドループのトレーニングとクローズドループの運転のギャップにより、キネマティックに不可能な計画を生成するリスクに苦しむオープンループ環境における軌道予測のために、現在のアプローチが訓練されている。
本稿では,トラジェクトリ予測,制御予測,トラジェクトリ改善ネットワークを1つのモデルで統合する,新しいマルチブランチ計画フレームワークであるHydra-NeXtを紹介する。
一般的なシナリオ計画のみを扱う現在のオープンループ軌道予測モデルとは異なり、Hydra-NeXtはさらに制御デコーダを使用して短期的なアクションに集中し、動的状況やリアクティブエージェントに対するより高速な応答を可能にする。
さらに,閉ループ環境におけるキネマティック制約に効果的に固執することにより,計画決定を拡張・洗練するトラジェクトリ・リファインメント・モジュールを提案する。
この統一されたアプローチは、オープンループトレーニングとクローズドループ駆動のギャップを埋め、データ収集の外部の専門家に頼ることなく、Bench2Driveデータセット上で65.89のドライビングスコア(DS)と48.20%の成功率(SR)の優れたパフォーマンスを示す。
Hydra-NeXt は22.98 DS と 17.49 SR を上回り、自動運転の大幅な進歩を示している。
コードはhttps://github.com/woxihuanjiangguo/Hydra-NeXt.comで入手できる。
関連論文リスト
- Multimodal Trajectory Prediction for Autonomous Driving on Unstructured Roads using Deep Convolutional Network [15.950227451262919]
露天掘り鉱業における自動運転の応用は、安全で効率的な輸送を実現するための注目を集めている。
対象車両の複数の軌道とその確率を予測する手法を提案する。
この方法は、オープンピットマイニングにおける自律運転シナリオに特化したデータセット上で、オフラインでテストされた。
論文 参考訳(メタデータ) (2024-09-27T02:29:02Z) - Planning with Adaptive World Models for Autonomous Driving [50.4439896514353]
マルチエージェントインタラクションをキャプチャする実世界のモーションプランニングベンチマークであるnuPlanを提案する。
我々は、グラフ畳み込みニューラルネットワーク(GCNN)であるBehaviorNetを用いて、このようなユニークな振る舞いをモデル化することを学ぶ。
また、モデル予測制御(MPC)ベースのプランナであるAdaptiveDriverについても紹介する。
論文 参考訳(メタデータ) (2024-06-15T18:53:45Z) - DriveCoT: Integrating Chain-of-Thought Reasoning with End-to-End Driving [81.04174379726251]
本稿では,DriveCoTというエンド・ツー・エンドの運転データセットを総合的に収集する。
センサーデータ、制御決定、および推論プロセスを示すチェーン・オブ・シークレット・ラベルが含まれている。
我々は,私たちのデータセットに基づいてトレーニングされたDriveCoT-Agentと呼ばれるベースラインモデルを提案し,連鎖予測と最終決定を生成する。
論文 参考訳(メタデータ) (2024-03-25T17:59:01Z) - Tractable Joint Prediction and Planning over Discrete Behavior Modes for
Urban Driving [15.671811785579118]
自己回帰閉ループモデルのパラメータ化は,再学習を伴わずに可能であることを示す。
離散潜在モード上での完全反応性閉ループ計画を提案する。
当社のアプローチは、CARLAにおける従来の最先端技術よりも、高密度なトラフィックシナリオに挑戦する上で優れています。
論文 参考訳(メタデータ) (2024-03-12T01:00:52Z) - Fusion-GRU: A Deep Learning Model for Future Bounding Box Prediction of
Traffic Agents in Risky Driving Videos [20.923004256768635]
Fusion-Gated Recurrent Unit (Fusion-GRU)は、将来のバウンディングボックスローカライゼーションのための新しいエンコーダデコーダアーキテクチャである。
提案手法は, ROL と HEV-I の2つの公開データセットを用いて評価する。
論文 参考訳(メタデータ) (2023-08-12T18:35:59Z) - End-to-end Autonomous Driving: Challenges and Frontiers [45.391430626264764]
エンドツーエンドの自動運転におけるモチベーション、ロードマップ、方法論、課題、今後のトレンドについて、270以上の論文を包括的に分析する。
マルチモダリティ、解釈可能性、因果的混乱、堅牢性、世界モデルなど、いくつかの重要な課題を掘り下げます。
基礎モデルと視覚前訓練の現在の進歩と、これらの技術をエンドツーエンドの駆動フレームワークに組み込む方法について論じる。
論文 参考訳(メタデータ) (2023-06-29T14:17:24Z) - Motion Planning and Control for Multi Vehicle Autonomous Racing at High
Speeds [100.61456258283245]
本稿では,自律走行のための多層移動計画と制御アーキテクチャを提案する。
提案手法はダララのAV-21レースカーに適用され、楕円形のレーストラックで25$m/s2$まで加速試験された。
論文 参考訳(メタデータ) (2022-07-22T15:16:54Z) - Trajectory-guided Control Prediction for End-to-end Autonomous Driving:
A Simple yet Strong Baseline [96.31941517446859]
現在のエンドツーエンドの自律運転法は、計画された軌道に基づいてコントローラを実行するか、直接制御予測を行う。
我々の統合されたアプローチには、それぞれ軌道計画と直接制御のための2つの枝があります。
CARLAシミュレータを用いて閉ループ都市運転環境の評価を行った。
論文 参考訳(メタデータ) (2022-06-16T12:42:44Z) - IntentNet: Learning to Predict Intention from Raw Sensor Data [86.74403297781039]
本論文では,LiDARセンサが生成する3次元点群と,環境の動的なマップの両方を利用するワンステージ検出器と予測器を開発した。
当社のマルチタスクモデルは、それぞれの別々のモジュールよりも高い精度を実現し、計算を節約します。
論文 参考訳(メタデータ) (2021-01-20T00:31:52Z) - An End-to-end Deep Reinforcement Learning Approach for the Long-term
Short-term Planning on the Frenet Space [0.0]
本稿では,自動運転車の意思決定と動作計画に向けた,エンドツーエンドの継続的強化学習手法を提案する。
初めて、Frenet空間上の状態と行動空間の両方を定義して、走行挙動を道路曲率に変化させないようにする。
このアルゴリズムは、フィードバックコントローラが追跡するFrenetフレーム上で連続時間軌道を生成する。
論文 参考訳(メタデータ) (2020-11-26T02:40:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。