論文の概要: An LLM-Integrated Framework for Completion, Management, and Tracing of STPA
- arxiv url: http://arxiv.org/abs/2503.12043v1
- Date: Sat, 15 Mar 2025 08:31:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-18 16:00:30.546740
- Title: An LLM-Integrated Framework for Completion, Management, and Tracing of STPA
- Title(参考訳): STPAの補完・管理・追跡のためのLLM統合フレームワーク
- Authors: Ali Raeisdanaei, Juho Kim, Michael Liao, Sparsh Kochhar,
- Abstract要約: システム理論プロセス分析(System-Theoretic Process Analysis)は、この分野における比較的最近の発展を示す。
我々は,大規模言語モデル(LLM)をベースとした複数の自動化されたビルドAモデルに,無償でオープンソースソフトウェアフレームワークを導入している。
要求技術者と研究者が構築した実世界Aモデルに対して,本手法を実験的に検証した。
- 参考スコア(独自算出の注目度): 27.851587652747423
- License:
- Abstract: In many safety-critical engineering domains, hazard analysis techniques are an essential part of requirement elicitation. Of the methods proposed for this task, STPA (System-Theoretic Process Analysis) represents a relatively recent development in the field. The completion, management, and traceability of this hazard analysis technique present a time-consuming challenge to the requirements and safety engineers involved. In this paper, we introduce a free, open-source software framework to build STPA models with several automated workflows powered by large language models (LLMs). In past works, LLMs have been successfully integrated into a myriad of workflows across various fields. Here, we demonstrate that LLMs can be used to complete tasks associated with STPA with a high degree of accuracy, saving the time and effort of the human engineers involved. We experimentally validate our method on real-world STPA models built by requirement engineers and researchers. The source code of our software framework is available at the following link: https://github.com/blueskysolarracing/stpa.
- Abstract(参考訳): 多くの安全クリティカルな工学分野において、ハザード分析技術は要求の導出に欠かせない部分である。
提案手法のうち,STPA (System-Theoretic Process Analysis) はこの分野における比較的最近の発展を示している。
このハザード分析手法の完成、管理、およびトレーサビリティは、関連する要件と安全エンジニアに時間を要する課題をもたらす。
本稿では,大規模言語モデル(LLM)をベースとした複数の自動化ワークフローを備えたSTPAモデルを構築するための,フリーでオープンソースのソフトウェアフレームワークを提案する。
過去の研究では、LLMは様々な分野にわたる無数のワークフローにうまく統合されてきた。
そこで本研究では,STPAに関連するタスクを高い精度で完了させることで,人間の技術者の時間と労力を節約できることを実証する。
要求技術者と研究者が構築した実世界のSTPAモデルに対して,本手法を実験的に検証した。
私たちのソフトウェアフレームワークのソースコードは、以下のリンクで利用可能です。
関連論文リスト
- Scaling Autonomous Agents via Automatic Reward Modeling And Planning [52.39395405893965]
大規模言語モデル(LLM)は、様々なタスクにまたがる顕著な機能を示している。
しかし、彼らは多段階の意思決定と環境フィードバックを必要とする問題に苦戦している。
人間のアノテーションを使わずに環境から報酬モデルを自動的に学習できるフレームワークを提案する。
論文 参考訳(メタデータ) (2025-02-17T18:49:25Z) - Creating an LLM-based AI-agent: A high-level methodology towards enhancing LLMs with APIs [0.0]
大規模言語モデル(LLM)は、工学と科学の様々な側面に革命をもたらした。
この論文は総合的なガイドとして機能し、アプリケーションプログラミングインタフェース(API)を活用する能力を備えたLLMの強化のための多面的アプローチを解明する。
本稿では,Hugging Faceコミュニティの小さなモデルを用いて,携帯端末の機能を活用したオンデバイスアーキテクチャを提案する。
論文 参考訳(メタデータ) (2024-12-17T14:14:04Z) - Requirements are All You Need: From Requirements to Code with LLMs [0.0]
大規模言語モデル(LLM)は、ソフトウェア工学のタスクに適用できる。
本稿では,要求文書からコードスニペットを自動生成するLLMについて述べる。
複雑なユーザ要件を解釈し、ロバストな設計とコードソリューションを作成する上で、LCMの熟練度を実証する。
論文 参考訳(メタデータ) (2024-06-14T14:57:35Z) - LLM Inference Unveiled: Survey and Roofline Model Insights [62.92811060490876]
大規模言語モデル(LLM)推論は急速に進化しており、機会と課題のユニークなブレンドを提示している。
本調査は, 研究状況を要約するだけでなく, 屋上モデルに基づく枠組みを導入することによって, 従来の文献レビューから際立っている。
このフレームワークは、ハードウェアデバイスにLSMをデプロイする際のボトルネックを特定し、実用上の問題を明確に理解する。
論文 参考訳(メタデータ) (2024-02-26T07:33:05Z) - Building Guardrails for Large Language Models [19.96292920696796]
LLMの入力や出力をフィルタリングするガードレールは、コアセーフガード技術として登場した。
このポジションペーパーでは、現在のオープンソースソリューション(Llama Guard, Nvidia NeMo, Guardrails AI)を詳しく調べ、より完全なソリューションを構築するための課題と道筋について論じる。
論文 参考訳(メタデータ) (2024-02-02T16:35:00Z) - TAT-LLM: A Specialized Language Model for Discrete Reasoning over Tabular and Textual Data [73.29220562541204]
我々は,言語モデル(LLM)の驚くべきパワーを活用して課題を解決することを検討する。
LLaMA2を微調整し,既存のエキスパートアノテートデータセットから自動生成したトレーニングデータを用いてTAT-LLM言語モデルを開発する。
論文 参考訳(メタデータ) (2024-01-24T04:28:50Z) - TaskBench: Benchmarking Large Language Models for Task Automation [82.2932794189585]
タスク自動化における大規模言語モデル(LLM)の機能を評価するためのフレームワークであるTaskBenchを紹介する。
具体的には、タスクの分解、ツールの選択、パラメータ予測を評価する。
提案手法は, 自動構築と厳密な人的検証を組み合わせることで, 人的評価との整合性を確保する。
論文 参考訳(メタデータ) (2023-11-30T18:02:44Z) - Software Testing with Large Language Models: Survey, Landscape, and
Vision [32.34617250991638]
事前訓練された大規模言語モデル(LLM)は、自然言語処理と人工知能におけるブレークスルー技術として登場した。
本稿では,ソフトウェアテストにおけるLCMの利用状況について概説する。
論文 参考訳(メタデータ) (2023-07-14T08:26:12Z) - LLM-based Frameworks for Power Engineering from Routine to Novel Tasks [3.2328326598511983]
エネルギーセクターのデジタル化は パワーエンジニアと研究者の コーディング責任を拡大しました
本稿では、この負担を軽減するために、LLM(Large Language Models)を活用する可能性について検討する。
論文 参考訳(メタデータ) (2023-05-18T15:36:06Z) - Technology Readiness Levels for Machine Learning Systems [107.56979560568232]
機械学習システムの開発とデプロイは、現代のツールで簡単に実行できますが、プロセスは一般的に急ぎ、エンドツーエンドです。
私たちは、機械学習の開発と展開のための実証済みのシステムエンジニアリングアプローチを開発しました。
当社の「機械学習技術準備レベル」フレームワークは、堅牢で信頼性が高く、責任あるシステムを確保するための原則的なプロセスを定義します。
論文 参考訳(メタデータ) (2021-01-11T15:54:48Z) - Technology Readiness Levels for AI & ML [79.22051549519989]
機械学習システムの開発は、現代的なツールで容易に実行できるが、プロセスは通常急いで、エンドツーエンドで実行される。
エンジニアリングシステムは、高品質で信頼性の高い結果の開発を効率化するために、明確に定義されたプロセスとテスト標準に従います。
我々は、機械学習の開発と展開のための実証されたシステムエンジニアリングアプローチを提案する。
論文 参考訳(メタデータ) (2020-06-21T17:14:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。