論文の概要: Maritime Mission Planning for Unmanned Surface Vessel using Large Language Model
- arxiv url: http://arxiv.org/abs/2503.12065v1
- Date: Sat, 15 Mar 2025 09:41:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-18 15:59:10.730562
- Title: Maritime Mission Planning for Unmanned Surface Vessel using Large Language Model
- Title(参考訳): 大規模言語モデルを用いた無人船舶の海上ミッション計画
- Authors: Muhayy Ud Din, Waseem Akram, Ahsan B Bakht, Yihao Dong, Irfan Hussain,
- Abstract要約: 本稿では,Large Language Models (LLM) を用いた新しいミッションプランニングフレームワークを提案する。
LLMは、自然言語のコマンドを理解し、シンボリック推論を実行し、状況の変化に合わせて柔軟に調整する能力に長けている。
提案手法では,LLMを海洋計画に統合し,高レベルの人的指示と実行可能な計画とのギャップを埋める。
- 参考スコア(独自算出の注目度): 0.932065750652415
- License:
- Abstract: Unmanned Surface Vessels (USVs) are essential for various maritime operations. USV mission planning approach offers autonomous solutions for monitoring, surveillance, and logistics. Existing approaches, which are based on static methods, struggle to adapt to dynamic environments, leading to suboptimal performance, higher costs, and increased risk of failure. This paper introduces a novel mission planning framework that uses Large Language Models (LLMs), such as GPT-4, to address these challenges. LLMs are proficient at understanding natural language commands, executing symbolic reasoning, and flexibly adjusting to changing situations. Our approach integrates LLMs into maritime mission planning to bridge the gap between high-level human instructions and executable plans, allowing real-time adaptation to environmental changes and unforeseen obstacles. In addition, feedback from low-level controllers is utilized to refine symbolic mission plans, ensuring robustness and adaptability. This framework improves the robustness and effectiveness of USV operations by integrating the power of symbolic planning with the reasoning abilities of LLMs. In addition, it simplifies the mission specification, allowing operators to focus on high-level objectives without requiring complex programming. The simulation results validate the proposed approach, demonstrating its ability to optimize mission execution while seamlessly adapting to dynamic maritime conditions.
- Abstract(参考訳): 非有人表面容器(USV)は様々な海上作戦に不可欠である。
USVのミッションプランニングアプローチは、監視、監視、物流のための自律的なソリューションを提供する。
既存のアプローチは静的な手法に基づいており、動的環境への適応に苦慮している。
本稿では,GPT-4のような大規模言語モデル(LLM)を用いて,これらの課題に対処する新しいミッションプランニングフレームワークを提案する。
LLMは自然言語のコマンドを理解し、シンボリック推論を実行し、状況の変化に合わせて柔軟に調整する。
提案手法は,LLMを海洋ミッション計画に統合し,高レベルの人的指示と実行可能計画のギャップを埋めることにより,環境変化や予期せぬ障害へのリアルタイム適応を可能にする。
さらに、低レベルコントローラからのフィードバックを利用して、象徴的なミッションプランを洗練し、堅牢性と適応性を確保する。
この枠組みは,LLMの推論能力とシンボリックプランニングの力を統合することにより,USV動作の堅牢性と有効性を向上させる。
さらに、ミッション仕様を単純化し、複雑なプログラミングを必要とせずに、オペレーターが高レベルの目標に集中できるようにする。
シミュレーションの結果, 提案手法の有効性を検証し, 動的海洋条件にシームレスに適応しながら, ミッション実行を最適化できることを実証した。
関連論文リスト
- Scaling Autonomous Agents via Automatic Reward Modeling And Planning [52.39395405893965]
大規模言語モデル(LLM)は、様々なタスクにまたがる顕著な機能を示している。
しかし、彼らは多段階の意思決定と環境フィードバックを必要とする問題に苦戦している。
人間のアノテーションを使わずに環境から報酬モデルを自動的に学習できるフレームワークを提案する。
論文 参考訳(メタデータ) (2025-02-17T18:49:25Z) - Zero-shot Robotic Manipulation with Language-guided Instruction and Formal Task Planning [16.89900521727246]
本稿では,言語誘導型シンボリックタスク計画(LM-SymOpt)フレームワークの最適化を提案する。
大規模言語モデルからの世界的知識と公式な推論を組み合わせた最初のエキスパートフリーな計画フレームワークです。
実験の結果,LM-SymOpt は既存の LLM ベースの計画手法よりも優れていた。
論文 参考訳(メタデータ) (2025-01-25T13:33:22Z) - Ontology-driven Prompt Tuning for LLM-based Task and Motion Planning [0.20940572815908076]
タスク・アンド・モーション・プランニング(TAMP)アプローチは、ハイレベルなシンボリック・プランと低レベルなモーション・プランニングを組み合わせたものである。
LLMは、タスクを記述するための直感的で柔軟な方法として自然言語を提供することによって、タスク計画を変える。
本研究は、知識に基づく推論を用いてユーザプロンプトを洗練・拡張する新しいプロンプトチューニングフレームワークを提案する。
論文 参考訳(メタデータ) (2024-12-10T13:18:45Z) - MALMM: Multi-Agent Large Language Models for Zero-Shot Robotics Manipulation [52.739500459903724]
大規模言語モデル(LLM)は、ロボティクスの操作やナビゲーションなど、さまざまな領域にまたがる優れた計画能力を示している。
特殊なLLMエージェント間で高レベル計画および低レベル制御コード生成を分散する新しいマルチエージェントLLMフレームワークを提案する。
長軸タスクを含む9つのRLBenchタスクに対するアプローチを評価し、ゼロショット環境でロボット操作を解く能力を実証した。
論文 参考訳(メタデータ) (2024-11-26T17:53:44Z) - ET-Plan-Bench: Embodied Task-level Planning Benchmark Towards Spatial-Temporal Cognition with Foundation Models [38.89166693142495]
ET-Plan-Benchは、Large Language Models (LLMs) を用いたタスク計画の具体化のためのベンチマークである。
様々な難易度や複雑さのレベルにおいて、制御可能で多様な実施タスクが特徴である。
我々のベンチマークでは、大規模で定量化され、高度に自動化され、きめ細かな診断フレームワークとして認識されている。
論文 参考訳(メタデータ) (2024-10-02T19:56:38Z) - AgentGen: Enhancing Planning Abilities for Large Language Model based Agent via Environment and Task Generation [81.32722475387364]
大規模言語モデルに基づくエージェントが注目され、ますます人気が高まっている。
計画能力は LLM ベースのエージェントの重要な構成要素であり、通常は初期状態から望ましい目標を達成する必要がある。
近年の研究では、専門家レベルの軌跡を指導訓練用LLMに活用することで、効果的に計画能力を向上させることが示されている。
論文 参考訳(メタデータ) (2024-08-01T17:59:46Z) - LLM3:Large Language Model-based Task and Motion Planning with Motion Failure Reasoning [78.2390460278551]
従来のタスク・アンド・モーション・プランニング(TAMP)アプローチは、シンボル的タスク・プランニングと連続的なモーション・ジェネレーションを結びつける手作業によるインタフェースに依存している。
本稿では,ドメインに依存しないインターフェースを備えたLarge Language Model (LLM) ベースの TAMP フレームワーク LLM3 を提案する。
具体的には、事前学習したLLMの強力な推論と計画能力を活用して、シンボル的なアクションシーケンスを提案し、動作計画のための連続的なアクションパラメータを選択する。
論文 参考訳(メタデータ) (2024-03-18T08:03:47Z) - Introspective Planning: Aligning Robots' Uncertainty with Inherent Task Ambiguity [0.659529078336196]
大規模言語モデル(LLM)は高度な推論能力を示し、ロボットが自然言語の指示を理解し、高レベルの行動を戦略的に計画することを可能にする。
LLMの幻覚は、ロボットがユーザー目標と不一致の計画を実行したり、クリティカルなシナリオでは安全でないりする可能性がある。
本稿では,LLMの不確かさとタスク固有のあいまいさを一致させる系統的手法であるイントロスペクティブプランニングを提案する。
論文 参考訳(メタデータ) (2024-02-09T16:40:59Z) - AdaPlanner: Adaptive Planning from Feedback with Language Models [56.367020818139665]
大規模言語モデル(LLM)は、最近、シーケンシャルな意思決定タスクの自律的エージェントとして機能する可能性を実証している。
本研究では,LLMエージェントが環境フィードバックに応じて自己生成計画を適応的に改善することのできるクローズドループアプローチであるAdaPlannerを提案する。
幻覚を緩和するために,様々なタスク,環境,エージェント機能にまたがる計画生成を容易にするコードスタイルのLCMプロンプト構造を開発した。
論文 参考訳(メタデータ) (2023-05-26T05:52:27Z) - Plan, Eliminate, and Track -- Language Models are Good Teachers for
Embodied Agents [99.17668730578586]
事前訓練された大言語モデル(LLM)は、世界に関する手続き的な知識をキャプチャする。
Plan, Eliminate, and Track (PET)フレームワークはタスク記述をハイレベルなサブタスクのリストに変換する。
PETフレームワークは、人間の目標仕様への一般化のために、SOTAよりも15%改善されている。
論文 参考訳(メタデータ) (2023-05-03T20:11:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。