論文の概要: Towards Vision Zero: The Accid3nD Dataset
- arxiv url: http://arxiv.org/abs/2503.12095v1
- Date: Sat, 15 Mar 2025 11:42:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-18 12:31:27.477597
- Title: Towards Vision Zero: The Accid3nD Dataset
- Title(参考訳): ビジョンゼロに向けて - Accid3nDデータセット
- Authors: Walter Zimmer, Ross Greer, Daniel Lehmberg, Marc Pavel, Holger Caesar, Xingcheng Zhou, Ahmed Ghita, Mohan Trivedi, Rui Song, Hu Cao, Akshay Gopalkrishnan, Alois C. Knoll,
- Abstract要約: 我々は、異なる天候と照明条件下での現実の高速道路事故の収集であるAccid3nDデータセットを提示する。
データセットには4台の道路カメラから記録された111,945個のラベル付きフレームと25HzのLiDARが含まれている。
本稿では,ルールに基づくアプローチと学習に基づくアプローチを組み合わせた事故検出モデルを提案する。
- 参考スコア(独自算出の注目度): 18.133662927802614
- License:
- Abstract: Even though a significant amount of work has been done to increase the safety of transportation networks, accidents still occur regularly. They must be understood as unavoidable and sporadic outcomes of traffic networks. No public dataset contains 3D annotations of real-world accidents recorded from roadside sensors. We present the Accid3nD dataset, a collection of real-world highway accidents in different weather and lighting conditions. It contains vehicle crashes at high-speed driving with 2,634,233 labeled 2D bounding boxes, instance masks, and 3D bounding boxes with track IDs. In total, the dataset contains 111,945 labeled frames recorded from four roadside cameras and LiDARs at 25 Hz. The dataset contains six object classes and is provided in the OpenLABEL format. We propose an accident detection model that combines a rule-based approach with a learning-based one. Experiments and ablation studies on our dataset show the robustness of our proposed method. The dataset, model, and code are available on our website: https://accident-dataset.github.io.
- Abstract(参考訳): 交通ネットワークの安全性を高めるためにかなりの作業が続けられているが、事故は定期的に発生している。
それらは、交通ネットワークの避けられない、散発的な結果として理解されなければならない。
公的なデータセットには、道端センサーから記録された現実世界の事故の3Dアノテーションは含まれていない。
我々は、異なる天候と照明条件下での現実の高速道路事故の収集であるAccid3nDデータセットを提示する。
2,634,233個のラベル付き2Dバウンディングボックス、インスタンスマスク、トラックID付き3Dバウンディングボックスがある。
このデータセットには4台の道路カメラから記録された111,945個のラベル付きフレームと25HzのLiDARが含まれている。
データセットには6つのオブジェクトクラスが含まれており、OpenLABELフォーマットで提供されている。
本稿では,ルールに基づくアプローチと学習に基づくアプローチを組み合わせた事故検出モデルを提案する。
提案手法のロバスト性を示す実験とアブレーション実験を行った。
データセット、モデル、コードは、私たちのウェブサイトで利用可能です。
関連論文リスト
- Enhancing Highway Safety: Accident Detection on the A9 Test Stretch Using Roadside Sensors [6.420737230522813]
道路交通事故は5歳から29歳の人々にとって主要な死因であり、毎年約19万人が死亡している。
これらの死亡率を減らすためには、スピードアップ、飲酒運転、注意散らしなどのヒューマンエラーに対処することが不可欠である。
本稿では,ルールに基づくアプローチと学習に基づくアプローチを組み合わせた事故検出フレームワークを提案する。
論文 参考訳(メタデータ) (2025-02-01T11:34:16Z) - DeepAccident: A Motion and Accident Prediction Benchmark for V2X
Autonomous Driving [76.29141888408265]
本研究では,現実の運転において頻繁に発生する多様な事故シナリオを含む大規模データセットを提案する。
提案したDeepAccidentデータセットには57Kの注釈付きフレームと285Kの注釈付きサンプルが含まれており、これは大規模なnuScenesデータセットの約7倍である。
論文 参考訳(メタデータ) (2023-04-03T17:37:00Z) - Generalized Few-Shot 3D Object Detection of LiDAR Point Cloud for
Autonomous Driving [91.39625612027386]
我々は,一般的な(ベース)オブジェクトに対して大量のトレーニングデータを持つが,レア(ノーベル)クラスに対してはごく少数のデータしか持たない,一般化された数発の3Dオブジェクト検出という新しいタスクを提案する。
具体的には、画像と点雲の奥行きの違いを分析し、3D LiDARデータセットにおける少数ショット設定の実践的原理を示す。
この課題を解決するために,既存の3次元検出モデルを拡張し,一般的なオブジェクトと稀なオブジェクトの両方を認識するためのインクリメンタルな微調整手法を提案する。
論文 参考訳(メタデータ) (2023-02-08T07:11:36Z) - Augmenting Ego-Vehicle for Traffic Near-Miss and Accident Classification
Dataset using Manipulating Conditional Style Translation [0.3441021278275805]
事故が起こる前の事故と近距離事故には差はない。
我々の貢献は、事故の定義を再定義し、DADA-2000データセットにおける事故の不整合を再注釈することである。
提案手法は、条件付きスタイル変換(CST)と分離可能な3次元畳み込みニューラルネットワーク(S3D)の2つの異なるコンポーネントを統合する。
論文 参考訳(メタデータ) (2023-01-06T22:04:47Z) - IDD-3D: Indian Driving Dataset for 3D Unstructured Road Scenes [79.18349050238413]
デプロイ可能なディープラーニングアーキテクチャの準備とトレーニングには、さまざまなトラフィックシナリオに適したモデルが必要である。
インドなどいくつかの発展途上国で見られる非構造的で複雑な運転レイアウトは、これらのモデルに挑戦している。
我々は、複数のカメラと12kの注釈付き駆動LiDARフレームを備えたLiDARセンサーのマルチモーダルデータからなる新しいデータセットIDD-3Dを構築した。
論文 参考訳(メタデータ) (2022-10-23T23:03:17Z) - Ithaca365: Dataset and Driving Perception under Repeated and Challenging
Weather Conditions [0.0]
我々は、新しいデータ収集プロセスを通じて、堅牢な自律運転を可能にする新しいデータセットを提案する。
データセットには、高精度GPS/INSとともに、カメラとLiDARセンサーからの画像と点雲が含まれている。
道路・オブジェクトのアモーダルセグメンテーションにおけるベースラインの性能を解析することにより,このデータセットの特異性を実証する。
論文 参考訳(メタデータ) (2022-08-01T22:55:32Z) - Hindsight is 20/20: Leveraging Past Traversals to Aid 3D Perception [59.2014692323323]
小さな、遠く、あるいは非常に隠蔽された物体は、検出するためのLiDAR点雲に限られた情報があるため、特に困難である。
本稿では,過去データから文脈情報を抽出する,エンドツーエンドのトレーニング可能な新しいフレームワークを提案する。
このフレームワークは現代のほとんどの3D検出アーキテクチャと互換性があり、複数の自律走行データセットの平均精度を大幅に向上させることができる。
論文 参考訳(メタデータ) (2022-03-22T00:58:27Z) - 3D-VField: Learning to Adversarially Deform Point Clouds for Robust 3D
Object Detection [111.32054128362427]
安全クリティカルな環境では、アウト・オブ・ディストリビューションとロングテールサンプルの堅牢性は、危険な問題を回避するのに不可欠である。
トレーニング中の変形点雲を考慮した3次元物体検出器の領域外データへの一般化を著しく改善する。
我々は、リアルに損傷を受けた稀な車の合成データセットであるCrashDを提案し、共有する。
論文 参考訳(メタデータ) (2021-12-09T08:50:54Z) - How to Build a Curb Dataset with LiDAR Data for Autonomous Driving [11.632427050596728]
ビデオカメラと3D LiDARは、検出を抑えるために自動運転車に搭載されている。
カメラベースストレッチ検出手法は、難解な照明条件に悩まされる。
テンプレートアノテーションや効率的なテンプレートラベリングアプローチを備えたデータセットは、要求が高い。
論文 参考訳(メタデータ) (2021-10-08T08:32:37Z) - One Million Scenes for Autonomous Driving: ONCE Dataset [91.94189514073354]
自律運転シナリオにおける3次元物体検出のためのONCEデータセットを提案する。
データは、利用可能な最大の3D自動運転データセットよりも20倍長い144時間の運転時間から選択される。
我々はONCEデータセット上で、様々な自己教師的・半教師的手法を再現し、評価する。
論文 参考訳(メタデータ) (2021-06-21T12:28:08Z) - Towards Anomaly Detection in Dashcam Videos [9.558392439655012]
本稿では,ディープラーニングによるデータ駆動型異常検出のアイデアをダッシュカムビデオに適用することを提案する。
トラックダッシュカムビデオ、すなわちRetroTrucksの大規模で多様なデータセットを提示する。
本研究では, (i) クラス分類損失と (ii) 再構成に基づく損失をRetroTruckの異常検出に適用する。
論文 参考訳(メタデータ) (2020-04-11T00:10:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。