Quantum Thermodynamics on a limit cycle
- URL: http://arxiv.org/abs/2503.12118v1
- Date: Sat, 15 Mar 2025 12:55:57 GMT
- Title: Quantum Thermodynamics on a limit cycle
- Authors: Varinder Singh, Euijoon Kwon, G J Milburn,
- Abstract summary: We consider a periodic quantum clock based on cooperative resonance fluorescence at zero temperature.<n>We show that the quantum phase diffusion on the limit cycle leads to fluctuations in the period.<n>As energy dissipation increases, the clock quality improves, fully validating, in a quantum system.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We consider a periodic quantum clock based on cooperative resonance fluorescence at zero temperature. In the quantum case, this system has an exact steady state and the limit cycle appears in conditional quantum dynamics under homodyne detection. We show that the intrinsic quantum phase diffusion on the limit cycle leads to fluctuations in the period. By simulating the stochastic master equation for homodyne detection, we extract the statistical properties of the clock period. We show that the precision of the clock satisfies the quantum-thermodynamic kinetic uncertainty relations. As energy dissipation increases, the clock quality improves, fully validating, in a quantum stochastic system, the link between energy dissipation and clock precision.
Related papers
- Powering a quantum clock with a non-equilibrium steady state [50.24983453990065]
We propose powering a quantum clock with the non-thermal resources offered by the stationary state of an integrable quantum spin chain.<n>Using experimentally relevant examples of quantum spin chains, we suggest crossing a phase transition point is crucial for optimal performance.
arXiv Detail & Related papers (2024-12-17T17:25:11Z) - Out-Of-Time-Ordered-Correlators for the Pure Inverted Quartic Oscillator: Classical Chaos meets Quantum Stability [0.0]
Out-of-time-ordered-correlators (OTOCs) have been suggested as a means to diagnose chaotic behavior in quantum mechanical systems.
I study OTOCs for the inverted anharmonic (pure quartic) oscillator in quantum mechanics.
For higher temperature, OTOCs seem to exhibit saturation consistent with a value of $-2 langle x2 rangle_T langle p2 rangle_T$ at late times.
arXiv Detail & Related papers (2024-08-22T18:00:00Z) - Effect of Measurement Backaction on Quantum Clock Precision Studied with
a Superconducting Circuit [13.318874561490933]
We study the precision of a quantum clock near zero temperature.
We find an equality for the precision of the clock in each regime.
We experimentally verify that our quantum clock obeys the kinetic uncertainty relation for the precision.
arXiv Detail & Related papers (2022-07-22T12:29:34Z) - Demonstrating Quantum Microscopic Reversibility Using Coherent States of
Light [58.8645797643406]
We propose and experimentally test a quantum generalization of the microscopic reversibility when a quantum system interacts with a heat bath.
We verify that the quantum modification for the principle of microscopic reversibility is critical in the low-temperature limit.
arXiv Detail & Related papers (2022-05-26T00:25:29Z) - Gauge Quantum Thermodynamics of Time-local non-Markovian Evolutions [77.34726150561087]
We deal with a generic time-local non-Markovian master equation.
We define current and power to be process-dependent as in classical thermodynamics.
Applying the theory to quantum thermal engines, we show that gauge transformations can change the machine efficiency.
arXiv Detail & Related papers (2022-04-06T17:59:15Z) - Fast Thermalization from the Eigenstate Thermalization Hypothesis [69.68937033275746]
Eigenstate Thermalization Hypothesis (ETH) has played a major role in understanding thermodynamic phenomena in closed quantum systems.
This paper establishes a rigorous link between ETH and fast thermalization to the global Gibbs state.
Our results explain finite-time thermalization in chaotic open quantum systems.
arXiv Detail & Related papers (2021-12-14T18:48:31Z) - Quantum clocks driven by measurement [0.0]
We describe a quantum clock driven by entropy reduction through measurement.
The mechanism consists of a superconducting transmon qubit coupled to an open co-planar resonator.
We show that the measurement itself induces coherent oscillations, with fluctuating period, in the conditional moments.
arXiv Detail & Related papers (2021-09-12T00:03:02Z) - Observation of Time-Crystalline Eigenstate Order on a Quantum Processor [80.17270167652622]
Quantum-body systems display rich phase structure in their low-temperature equilibrium states.
We experimentally observe an eigenstate-ordered DTC on superconducting qubits.
Results establish a scalable approach to study non-equilibrium phases of matter on current quantum processors.
arXiv Detail & Related papers (2021-07-28T18:00:03Z) - Taking the temperature of a pure quantum state [55.41644538483948]
Temperature is a deceptively simple concept that still raises deep questions at the forefront of quantum physics research.
We propose a scheme to measure the temperature of such pure states through quantum interference.
arXiv Detail & Related papers (2021-03-30T18:18:37Z) - Measuring the thermodynamic cost of timekeeping [0.0]
In some form or another, all clocks use the evolution of nature towards higher entropy states to quantify the passage of time.
We show theoretically that the maximum possible accuracy for this classical clock is proportional to the entropy created per tick.
We find that there is a linear relation between accuracy and entropy and that the clock operates within an order of magnitude of the theoretical bound.
arXiv Detail & Related papers (2020-06-15T18:17:44Z) - Thermodynamics of Optical Bloch Equations [0.0]
We study the coherent exchange of energy between a quantum bit (qubit) and a quasi-resonant driving field in the presence of a thermal bath.
We coarse-grain the obtained expressions, using a methodology similar to the derivation of the dynamical master equation.
Our findings can be readily extended to larger open quantum systems.
arXiv Detail & Related papers (2020-01-22T14:37:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.