Language Models for Automated Classification of Brain MRI Reports and Growth Chart Generation
- URL: http://arxiv.org/abs/2503.12143v1
- Date: Sat, 15 Mar 2025 13:59:44 GMT
- Title: Language Models for Automated Classification of Brain MRI Reports and Growth Chart Generation
- Authors: Maryam Daniali, Shivaram Karandikar, Dabriel Zimmerman, J. Eric Schmitt, Matthew J. Buczek, Benjamin Jung, Laura Mercedes, Jakob Seidlitz, Vanessa Troiani, Lena Dorfschmidt, Eren Kafadar, Remo Williams, Susan Sotardi, Arastoo Vosough, Scott Haag, Jenna M. Schabdach, Aaron Alexander-Bloch,
- Abstract summary: We develop fine-tuned language models (LMs) to classify brain MRI reports as normal or abnormal.<n>We also explore the reasoning capabilities of a leading LM, Gemini 1.5-Pro, for normal report categorization.<n>Our LMs offer scalable analysis of radiology reports, enabling automated classification of brain MRIs in large datasets.
- Score: 1.16602699944655
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Clinically acquired brain MRIs and radiology reports are valuable but underutilized resources due to the challenges of manual analysis and data heterogeneity. We developed fine-tuned language models (LMs) to classify brain MRI reports as normal (reports with limited pathology) or abnormal, fine-tuning BERT, BioBERT, ClinicalBERT, and RadBERT on 44,661 reports. We also explored the reasoning capabilities of a leading LM, Gemini 1.5-Pro, for normal report categorization. Automated image processing and modeling generated brain growth charts from LM-classified normal scans, comparing them to human-derived charts. Fine-tuned LMs achieved high classification performance (F1-Score >97%), with unbalanced training mitigating class imbalance. Performance was robust on out-of-distribution data, with full text outperforming summary (impression) sections. Gemini 1.5-Pro showed a promising categorization performance, especially with clinical inference. LM-derived brain growth charts were nearly identical to human-annotated charts (r = 0.99, p < 2.2e-16). Our LMs offer scalable analysis of radiology reports, enabling automated classification of brain MRIs in large datasets. One application is automated generation of brain growth charts for benchmarking quantitative image features. Further research is needed to address data heterogeneity and optimize LM reasoning.
Related papers
- Enhancing Brain Age Estimation with a Multimodal 3D CNN Approach Combining Structural MRI and AI-Synthesized Cerebral Blood Volume Data [14.815462507141163]
Brain Age Gap Estimation (BrainAGE) offers a neuroimaging biomarker for understanding brain age.<n>Current approaches primarily use T1-weighted magnetic resonance imaging (T1w MRI) data, capturing only structural brain information.<n>We developed a deep learning model using a VGG-based architecture for both modalities and combined their predictions using linear regression.<n>Our model achieved a mean absolute error (MAE) of 3.95 years and an $R2$ of 0.943 on the test set, outperforming existing models trained on similar data.
arXiv Detail & Related papers (2024-12-01T21:54:08Z) - Knowledge-Guided Prompt Learning for Lifespan Brain MR Image Segmentation [53.70131202548981]
We present a two-step segmentation framework employing Knowledge-Guided Prompt Learning (KGPL) for brain MRI.
Specifically, we first pre-train segmentation models on large-scale datasets with sub-optimal labels.
The introduction of knowledge-wise prompts captures semantic relationships between anatomical variability and biological processes.
arXiv Detail & Related papers (2024-07-31T04:32:43Z) - AutoRG-Brain: Grounded Report Generation for Brain MRI [57.22149878985624]
Radiologists are tasked with interpreting a large number of images in a daily base, with the responsibility of generating corresponding reports.
This demanding workload elevates the risk of human error, potentially leading to treatment delays, increased healthcare costs, revenue loss, and operational inefficiencies.
We initiate a series of work on grounded Automatic Report Generation (AutoRG)
This system supports the delineation of brain structures, the localization of anomalies, and the generation of well-organized findings.
arXiv Detail & Related papers (2024-07-23T17:50:00Z) - A Demographic-Conditioned Variational Autoencoder for fMRI Distribution Sampling and Removal of Confounds [49.34500499203579]
We create a variational autoencoder (VAE)-based model, DemoVAE, to decorrelate fMRI features from demographics.
We generate high-quality synthetic fMRI data based on user-supplied demographics.
arXiv Detail & Related papers (2024-05-13T17:49:20Z) - Brain Tumor Segmentation Based on Deep Learning, Attention Mechanisms, and Energy-Based Uncertainty Prediction [0.0]
Brain tumors are one of the deadliest forms of cancer with a mortality rate of over 80%.
In medical analysis, the manual annotation and segmentation of a brain tumor can be a complicated task.
This paper proposes a region of interest detection algorithm that is implemented during data preprocessing to locate salient features and remove extraneous MRI data.
A fully convolutional autoencoder with soft attention segments the different brain MRIs.
arXiv Detail & Related papers (2023-12-31T20:42:52Z) - Predicting recovery following stroke: deep learning, multimodal data and
feature selection using explainable AI [3.797471910783104]
Major challenges include the very high dimensionality of neuroimaging data and the relatively small size of the datasets available for learning.
We introduce a novel approach of training a convolutional neural network (CNN) on images that combine regions-of-interest extracted from MRIs.
We conclude by proposing how the current models could be improved to achieve even higher levels of accuracy using images from hospital scanners.
arXiv Detail & Related papers (2023-10-29T22:31:20Z) - UniBrain: Universal Brain MRI Diagnosis with Hierarchical
Knowledge-enhanced Pre-training [66.16134293168535]
We propose a hierarchical knowledge-enhanced pre-training framework for the universal brain MRI diagnosis, termed as UniBrain.
Specifically, UniBrain leverages a large-scale dataset of 24,770 imaging-report pairs from routine diagnostics.
arXiv Detail & Related papers (2023-09-13T09:22:49Z) - BrainFormer: A Hybrid CNN-Transformer Model for Brain fMRI Data
Classification [31.83866719445596]
BrainFormer is a general hybrid Transformer architecture for brain disease classification with single fMRI volume.
BrainFormer is constructed by modeling the local cues within each voxel with 3D convolutions.
We evaluate BrainFormer on five independently acquired datasets including ABIDE, ADNI, MPILMBB, ADHD-200 and ECHO.
arXiv Detail & Related papers (2022-08-05T07:54:10Z) - Automated SSIM Regression for Detection and Quantification of Motion
Artefacts in Brain MR Images [54.739076152240024]
Motion artefacts in magnetic resonance brain images are a crucial issue.
The assessment of MR image quality is fundamental before proceeding with the clinical diagnosis.
An automated image quality assessment based on the structural similarity index (SSIM) regression has been proposed here.
arXiv Detail & Related papers (2022-06-14T10:16:54Z) - Modeling Shared Responses in Neuroimaging Studies through MultiView ICA [94.31804763196116]
Group studies involving large cohorts of subjects are important to draw general conclusions about brain functional organization.
We propose a novel MultiView Independent Component Analysis model for group studies, where data from each subject are modeled as a linear combination of shared independent sources plus noise.
We demonstrate the usefulness of our approach first on fMRI data, where our model demonstrates improved sensitivity in identifying common sources among subjects.
arXiv Detail & Related papers (2020-06-11T17:29:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.