論文の概要: Interpretation Gaps in LLM-Assisted Comprehension of Privacy Documents
- arxiv url: http://arxiv.org/abs/2503.12225v1
- Date: Sat, 15 Mar 2025 18:43:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-18 16:00:55.385333
- Title: Interpretation Gaps in LLM-Assisted Comprehension of Privacy Documents
- Title(参考訳): LLM支援によるプライバシー文書の理解における解釈ギャップ
- Authors: Rinku Dewri,
- Abstract要約: 本稿では,大規模言語モデル(LLM)を用いて複雑なプライバシポリシからデータプラクティスの簡易解釈を得る際のギャップについて考察する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: This article explores the gaps that can manifest when using a large language model (LLM) to obtain simplified interpretations of data practices from a complex privacy policy. We exemplify these gaps to showcase issues in accuracy, completeness, clarity and representation, while advocating for continued research to realize an LLM's true potential in revolutionizing privacy management through personal assistants and automated compliance checking.
- Abstract(参考訳): 本稿では,大規模言語モデル(LLM)を用いて複雑なプライバシポリシからデータプラクティスの簡易解釈を得る際のギャップについて考察する。
我々はこれらのギャップを例示し、正確性、完全性、明確性、表現の課題を示すとともに、パーソナルアシスタントによるプライバシー管理の革新と自動コンプライアンスチェックにおけるLLMの真の可能性を実現するための継続的な研究を提唱する。
関連論文リスト
- Aligning Large Language Models to Follow Instructions and Hallucinate Less via Effective Data Filtering [66.5524727179286]
NOVAは、幻覚を減らすための学習知識とよく一致した高品質なデータを特定するために設計されたフレームワークである。
内部整合性探索(ICP)とセマンティック等価同定(SEI)が含まれており、LLMが命令データとどれだけ親しみやすいかを測定する。
選択したサンプルの品質を確保するため,親しみ以上の特性を考慮した専門家による報酬モデルを導入する。
論文 参考訳(メタデータ) (2025-02-11T08:05:56Z) - Differentially Private Steering for Large Language Model Alignment [55.30573701583768]
本稿では,大規模言語モデルとプライベートデータセットの整合性に関する最初の研究について述べる。
本研究では, LLM underlineAment (PSA) アルゴリズムのためのtextitunderlinePrivate underlineSteeringを提案する。
以上の結果から,PSAはLPMアライメントのDP保証を実現し,性能の低下を最小限に抑えることができた。
論文 参考訳(メタデータ) (2025-01-30T17:58:36Z) - Privacy-Preserving Large Language Models: Mechanisms, Applications, and Future Directions [0.0]
本調査では,大規模言語モデルに適したプライバシ保護機構の展望について考察する。
メンバーシップ推論やモデル逆転攻撃といった重要なプライバシー問題に対処する上での有効性を検討する。
本稿では、最先端のアプローチと今後のトレンドを合成することによって、堅牢でプライバシーに配慮した大規模言語モデルを構築するための基盤を提供する。
論文 参考訳(メタデータ) (2024-12-09T00:24:09Z) - LLM-PBE: Assessing Data Privacy in Large Language Models [111.58198436835036]
大規模言語モデル(LLM)は多くのドメインに不可欠なものとなり、データ管理、マイニング、分析におけるアプリケーションを大幅に進歩させた。
この問題の批判的な性質にもかかわらず、LLMにおけるデータプライバシのリスクを総合的に評価する文献は存在しない。
本稿では,LLMにおけるデータプライバシリスクの体系的評価を目的としたツールキットであるLLM-PBEを紹介する。
論文 参考訳(メタデータ) (2024-08-23T01:37:29Z) - Exploring Automatic Cryptographic API Misuse Detection in the Era of LLMs [60.32717556756674]
本稿では,暗号誤用の検出において,大規模言語モデルを評価するための体系的評価フレームワークを提案する。
11,940個のLCM生成レポートを詳細に分析したところ、LSMに固有の不安定性は、報告の半数以上が偽陽性になる可能性があることがわかった。
最適化されたアプローチは、従来の手法を超え、確立されたベンチマークでこれまで知られていなかった誤用を明らかにすることで、90%近い顕著な検出率を達成する。
論文 参考訳(メタデータ) (2024-07-23T15:31:26Z) - Evaluating the Semantic Profiling Abilities of LLMs for Natural Language Utterances in Data Visualization [14.706166701856327]
データビジュアライゼーションのための自然言語インタフェース(NLI)は、そのような情報を推測する方法を模索してきたが、人間の発話に固有の不確実性のため、課題は続いている。
近年のLarge Language Models (LLM) の進歩はこれらの課題に対処するための道筋を提供するが、関連する意味情報を抽出する能力は未解明のままである。
論文 参考訳(メタデータ) (2024-07-08T17:04:31Z) - On Protecting the Data Privacy of Large Language Models (LLMs): A Survey [35.48984524483533]
LLM(Large Language Model)は、人間の言語を理解し、生成し、翻訳できる複雑な人工知能システムである。
LLMは大量のデータを処理して生成し、データプライバシを脅かす可能性がある。
論文 参考訳(メタデータ) (2024-03-08T08:47:48Z) - An LLM Maturity Model for Reliable and Transparent Text-to-Query [0.0]
本研究は,テキスト・ツー・クエリ・アプリケーションに適したLLM成熟度モデルを提案する。
この成熟度モデルは、単に正確さや精度以上の次元を組み込むことで、そのような応用におけるLCMの評価における既存の空白を埋めようとしている。
論文 参考訳(メタデータ) (2024-02-20T06:20:09Z) - Sparsity-Guided Holistic Explanation for LLMs with Interpretable
Inference-Time Intervention [53.896974148579346]
大規模言語モデル(LLM)は、様々な自然言語処理領域において前例のないブレークスルーを達成した。
LLMの謎的なブラックボックスの性質は、透過的で説明可能なアプリケーションを妨げる、解釈可能性にとって重要な課題である。
本稿では,LLMの全体的解釈を提供することを目的として,スポーシティ誘導技術に係わる新しい方法論を提案する。
論文 参考訳(メタデータ) (2023-12-22T19:55:58Z) - Can LLMs Keep a Secret? Testing Privacy Implications of Language Models via Contextual Integrity Theory [82.7042006247124]
私たちは、最も有能なAIモデルでさえ、人間がそれぞれ39%と57%の確率で、プライベートな情報を公開していることを示しています。
我々の研究は、推論と心の理論に基づいて、新しい推論時プライバシー保護アプローチを即時に探求する必要性を浮き彫りにしている。
論文 参考訳(メタデータ) (2023-10-27T04:15:30Z) - Interpretable Privacy Preservation of Text Representations Using Vector
Steganography [0.0]
言語モデル(LM)が生成する文脈表現は、トレーニングコーパスに存在する刺激的な関連を学習する。
敵はこれらの関連を利用して、コーパス内で言及されるエンティティのプライベート属性をリバースエンジニアリングすることができる。
本研究の目的は, ベクトル幾何学にステガノグラフィーを組み込んで, 基礎となるスプリアス結合を解き明かす手法を研究・開発することである。
論文 参考訳(メタデータ) (2021-12-05T12:42:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。