Simulation-based Bayesian inference under model misspecification
- URL: http://arxiv.org/abs/2503.12315v1
- Date: Sun, 16 Mar 2025 01:47:19 GMT
- Title: Simulation-based Bayesian inference under model misspecification
- Authors: Ryan P. Kelly, David J. Warne, David T. Frazier, David J. Nott, Michael U. Gutmann, Christopher Drovandi,
- Abstract summary: We focus on the challenges faced by SBI methods under model misspecification.<n>We consolidate recent research aimed at mitigating the effects of misspecification.<n>To illustrate both the vulnerabilities of popular SBI methods and the effectiveness of misspecification-robust alternatives, we present empirical results.
- Score: 4.2490325931915285
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Simulation-based Bayesian inference (SBI) methods are widely used for parameter estimation in complex models where evaluating the likelihood is challenging but generating simulations is relatively straightforward. However, these methods commonly assume that the simulation model accurately reflects the true data-generating process, an assumption that is frequently violated in realistic scenarios. In this paper, we focus on the challenges faced by SBI methods under model misspecification. We consolidate recent research aimed at mitigating the effects of misspecification, highlighting three key strategies: i) robust summary statistics, ii) generalised Bayesian inference, and iii) error modelling and adjustment parameters. To illustrate both the vulnerabilities of popular SBI methods and the effectiveness of misspecification-robust alternatives, we present empirical results on an illustrative example.
Related papers
- Confidence in Large Language Model Evaluation: A Bayesian Approach to Limited-Sample Challenges [13.526258635654882]
This study introduces a Bayesian approach for large language models (LLMs) capability assessment.
We treat model capabilities as latent variables and leverage a curated query set to induce discriminative responses.
Experimental evaluations with GPT-series models demonstrate that the proposed method achieves superior discrimination compared to conventional evaluation methods.
arXiv Detail & Related papers (2025-04-30T04:24:50Z) - Identifiable Multi-View Causal Discovery Without Non-Gaussianity [63.217175519436125]
We propose a novel approach to linear causal discovery in the framework of multi-view Structural Equation Models (SEM)<n>We prove the identifiability of all the parameters of the model without any further assumptions on the structure of the SEM other than it being acyclic.<n>The proposed methodology is validated through simulations and application on real data, where it enables the estimation of causal graphs between brain regions.
arXiv Detail & Related papers (2025-02-27T14:06:14Z) - Model-free Methods for Event History Analysis and Efficient Adjustment (PhD Thesis) [55.2480439325792]
This thesis is a series of independent contributions to statistics unified by a model-free perspective.<n>The first chapter elaborates on how a model-free perspective can be used to formulate flexible methods that leverage prediction techniques from machine learning.<n>The second chapter studies the concept of local independence, which describes whether the evolution of one process is directly influenced by another.
arXiv Detail & Related papers (2025-02-11T19:24:09Z) - Testing Generalizability in Causal Inference [3.547529079746247]
There is no formal procedure for statistically evaluating generalizability in machine learning algorithms.
We propose a systematic and quantitative framework for evaluating model generalizability in causal inference settings.
By basing simulations on real data, our method ensures more realistic evaluations, which is often missing in current work.
arXiv Detail & Related papers (2024-11-05T11:44:00Z) - On conditional diffusion models for PDE simulations [53.01911265639582]
We study score-based diffusion models for forecasting and assimilation of sparse observations.
We propose an autoregressive sampling approach that significantly improves performance in forecasting.
We also propose a new training strategy for conditional score-based models that achieves stable performance over a range of history lengths.
arXiv Detail & Related papers (2024-10-21T18:31:04Z) - MITA: Bridging the Gap between Model and Data for Test-time Adaptation [68.62509948690698]
Test-Time Adaptation (TTA) has emerged as a promising paradigm for enhancing the generalizability of models.
We propose Meet-In-The-Middle based MITA, which introduces energy-based optimization to encourage mutual adaptation of the model and data from opposing directions.
arXiv Detail & Related papers (2024-10-12T07:02:33Z) - Addressing Misspecification in Simulation-based Inference through Data-driven Calibration [43.811367860375825]
Recent work has demonstrated that model misspecification can harm simulation-based inference's reliability.
This work introduces robust posterior estimation (ROPE), a framework that overcomes model misspecification with a small real-world calibration set of ground truth parameter measurements.
arXiv Detail & Related papers (2024-05-14T16:04:39Z) - Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
Simulation-based inference ( SBI) is capable of approximating the posterior distribution that relates input parameters to a given observation.
In this work, we consider a tall data extension in which multiple observations are available to better infer the parameters of the model.
We compare our method to recently proposed competing approaches on various numerical experiments and demonstrate its superiority in terms of numerical stability and computational cost.
arXiv Detail & Related papers (2024-04-11T09:23:36Z) - Learning Robust Statistics for Simulation-based Inference under Model
Misspecification [23.331522354991527]
We propose the first general approach to handle model misspecification that works across different classes of simulation-based inference methods.
We show that our method yields robust inference in misspecified scenarios, whilst still being accurate when the model is well-specified.
arXiv Detail & Related papers (2023-05-25T09:06:26Z) - Black-box Bayesian inference for economic agent-based models [0.0]
We investigate the efficacy of two classes of black-box approximate Bayesian inference methods.
We demonstrate that neural network based black-box methods provide state of the art parameter inference for economic simulation models.
arXiv Detail & Related papers (2022-02-01T18:16:12Z) - Estimation of Bivariate Structural Causal Models by Variational Gaussian
Process Regression Under Likelihoods Parametrised by Normalising Flows [74.85071867225533]
Causal mechanisms can be described by structural causal models.
One major drawback of state-of-the-art artificial intelligence is its lack of explainability.
arXiv Detail & Related papers (2021-09-06T14:52:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.