HyperKAN: Hypergraph Representation Learning with Kolmogorov-Arnold Networks
- URL: http://arxiv.org/abs/2503.12365v1
- Date: Sun, 16 Mar 2025 05:39:52 GMT
- Title: HyperKAN: Hypergraph Representation Learning with Kolmogorov-Arnold Networks
- Authors: Xiangfei Fang, Boying Wang, Chengying Huan, Shaonan Ma, Heng Zhang, Chen Zhao,
- Abstract summary: HyperKAN is a novel framework for hypergraph representation learning that transcends the limitations of message-passing techniques.<n> Experiments conducted on the real-world datasets demonstrate that HyperKAN significantly outperforms state-the-art HNN methods.
- Score: 8.453902060048577
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Hypergraph representation learning has garnered increasing attention across various domains due to its capability to model high-order relationships. Traditional methods often rely on hypergraph neural networks (HNNs) employing message passing mechanisms to aggregate vertex and hyperedge features. However, these methods are constrained by their dependence on hypergraph topology, leading to the challenge of imbalanced information aggregation, where high-degree vertices tend to aggregate redundant features, while low-degree vertices often struggle to capture sufficient structural features. To overcome the above challenges, we introduce HyperKAN, a novel framework for hypergraph representation learning that transcends the limitations of message-passing techniques. HyperKAN begins by encoding features for each vertex and then leverages Kolmogorov-Arnold Networks (KANs) to capture complex nonlinear relationships. By adjusting structural features based on similarity, our approach generates refined vertex representations that effectively addresses the challenge of imbalanced information aggregation. Experiments conducted on the real-world datasets demonstrate that HyperKAN significantly outperforms state of-the-art HNN methods, achieving nearly a 9% performance improvement on the Senate dataset.
Related papers
- Hypergraph Foundation Model [31.16656352968761]
Hypergraph neural networks (HGNNs) effectively model complex high-order relationships in domains like protein interactions and social networks.<n>We present Hyper-FM, a Hypergraph Foundation Model for multi-domain knowledge extraction.<n>We also curate 10 text-attributed hypergraph datasets to advance research between HGNNs and LLMs.
arXiv Detail & Related papers (2025-03-03T05:56:08Z) - Hyper-YOLO: When Visual Object Detection Meets Hypergraph Computation [74.65906322148997]
We introduce a new object detection method that integrates hypergraph computations to capture the complex high-order correlations among visual features.
Hyper-YOLO significantly outperforms the advanced YOLOv8-N and YOLOv9T with 12% $textval$ and 9% $APMoonLab improvements.
arXiv Detail & Related papers (2024-08-09T01:21:15Z) - Hypergraph Transformer for Semi-Supervised Classification [50.92027313775934]
We propose a novel hypergraph learning framework, HyperGraph Transformer (HyperGT)
HyperGT uses a Transformer-based neural network architecture to effectively consider global correlations among all nodes and hyperedges.
It achieves comprehensive hypergraph representation learning by effectively incorporating global interactions while preserving local connectivity patterns.
arXiv Detail & Related papers (2023-12-18T17:50:52Z) - Topology-guided Hypergraph Transformer Network: Unveiling Structural Insights for Improved Representation [1.1606619391009658]
We propose a Topology-guided Hypergraph Transformer Network (THTN)
In this model, we first formulate a hypergraph from a graph while retaining its structural essence to learn higher-order relations within the graph.
We present a structure-aware self-attention mechanism that discovers the important nodes and hyperedges from both semantic and structural viewpoints.
arXiv Detail & Related papers (2023-10-14T20:08:54Z) - From Hypergraph Energy Functions to Hypergraph Neural Networks [94.88564151540459]
We present an expressive family of parameterized, hypergraph-regularized energy functions.
We then demonstrate how minimizers of these energies effectively serve as node embeddings.
We draw parallels between the proposed bilevel hypergraph optimization, and existing GNN architectures in common use.
arXiv Detail & Related papers (2023-06-16T04:40:59Z) - Tensorized Hypergraph Neural Networks [69.65385474777031]
We propose a novel adjacency-tensor-based textbfTensorized textbfHypergraph textbfNeural textbfNetwork (THNN)
THNN is faithful hypergraph modeling framework through high-order outer product feature passing message.
Results from experiments on two widely used hypergraph datasets for 3-D visual object classification show the model's promising performance.
arXiv Detail & Related papers (2023-06-05T03:26:06Z) - Hypergraph Convolutional Networks via Equivalency between Hypergraphs
and Undirected Graphs [59.71134113268709]
We present General Hypergraph Spectral Convolution(GHSC), a general learning framework that can handle EDVW and EIVW hypergraphs.
In this paper, we show that the proposed framework can achieve state-of-the-art performance.
Experiments from various domains including social network analysis, visual objective classification, protein learning demonstrate that the proposed framework can achieve state-of-the-art performance.
arXiv Detail & Related papers (2022-03-31T10:46:47Z) - Residual Enhanced Multi-Hypergraph Neural Network [26.42547421121713]
HyperGraph Neural Network (HGNN) is the de-facto method for hypergraph representation learning.
We propose the Residual enhanced Multi-Hypergraph Neural Network, which can fuse multi-modal information from each hypergraph effectively.
arXiv Detail & Related papers (2021-05-02T14:53:32Z) - Parameterized Hypercomplex Graph Neural Networks for Graph
Classification [1.1852406625172216]
We develop graph neural networks that leverage the properties of hypercomplex feature transformation.
In particular, in our proposed class of models, the multiplication rule specifying the algebra itself is inferred from the data during training.
We test our proposed hypercomplex GNN on several open graph benchmark datasets and show that our models reach state-of-the-art performance.
arXiv Detail & Related papers (2021-03-30T18:01:06Z) - HNHN: Hypergraph Networks with Hyperedge Neurons [90.15253035487314]
HNHN is a hypergraph convolution network with nonlinear activation functions applied to both hypernodes and hyperedges.
We demonstrate improved performance of HNHN in both classification accuracy and speed on real world datasets when compared to state of the art methods.
arXiv Detail & Related papers (2020-06-22T14:08:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.