Hypergraph Foundation Model
- URL: http://arxiv.org/abs/2503.01203v1
- Date: Mon, 03 Mar 2025 05:56:08 GMT
- Title: Hypergraph Foundation Model
- Authors: Yifan Feng, Shiquan Liu, Xiangmin Han, Shaoyi Du, Zongze Wu, Han Hu, Yue Gao,
- Abstract summary: Hypergraph neural networks (HGNNs) effectively model complex high-order relationships in domains like protein interactions and social networks.<n>We present Hyper-FM, a Hypergraph Foundation Model for multi-domain knowledge extraction.<n>We also curate 10 text-attributed hypergraph datasets to advance research between HGNNs and LLMs.
- Score: 31.16656352968761
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Hypergraph neural networks (HGNNs) effectively model complex high-order relationships in domains like protein interactions and social networks by connecting multiple vertices through hyperedges, enhancing modeling capabilities, and reducing information loss. Developing foundation models for hypergraphs is challenging due to their distinct data, which includes both vertex features and intricate structural information. We present Hyper-FM, a Hypergraph Foundation Model for multi-domain knowledge extraction, featuring Hierarchical High-Order Neighbor Guided Vertex Knowledge Embedding for vertex feature representation and Hierarchical Multi-Hypergraph Guided Structural Knowledge Extraction for structural information. Additionally, we curate 10 text-attributed hypergraph datasets to advance research between HGNNs and LLMs. Experiments on these datasets show that Hyper-FM outperforms baseline methods by approximately 13.3\%, validating our approach. Furthermore, we propose the first scaling law for hypergraph foundation models, demonstrating that increasing domain diversity significantly enhances performance, unlike merely augmenting vertex and hyperedge counts. This underscores the critical role of domain diversity in scaling hypergraph models.
Related papers
- HyperKAN: Hypergraph Representation Learning with Kolmogorov-Arnold Networks [8.453902060048577]
HyperKAN is a novel framework for hypergraph representation learning that transcends the limitations of message-passing techniques.
Experiments conducted on the real-world datasets demonstrate that HyperKAN significantly outperforms state-the-art HNN methods.
arXiv Detail & Related papers (2025-03-16T05:39:52Z) - Hypergraph Transformer for Semi-Supervised Classification [50.92027313775934]
We propose a novel hypergraph learning framework, HyperGraph Transformer (HyperGT)
HyperGT uses a Transformer-based neural network architecture to effectively consider global correlations among all nodes and hyperedges.
It achieves comprehensive hypergraph representation learning by effectively incorporating global interactions while preserving local connectivity patterns.
arXiv Detail & Related papers (2023-12-18T17:50:52Z) - Topology-guided Hypergraph Transformer Network: Unveiling Structural Insights for Improved Representation [1.1606619391009658]
We propose a Topology-guided Hypergraph Transformer Network (THTN)
In this model, we first formulate a hypergraph from a graph while retaining its structural essence to learn higher-order relations within the graph.
We present a structure-aware self-attention mechanism that discovers the important nodes and hyperedges from both semantic and structural viewpoints.
arXiv Detail & Related papers (2023-10-14T20:08:54Z) - From Hypergraph Energy Functions to Hypergraph Neural Networks [94.88564151540459]
We present an expressive family of parameterized, hypergraph-regularized energy functions.
We then demonstrate how minimizers of these energies effectively serve as node embeddings.
We draw parallels between the proposed bilevel hypergraph optimization, and existing GNN architectures in common use.
arXiv Detail & Related papers (2023-06-16T04:40:59Z) - Tensorized Hypergraph Neural Networks [69.65385474777031]
We propose a novel adjacency-tensor-based textbfTensorized textbfHypergraph textbfNeural textbfNetwork (THNN)
THNN is faithful hypergraph modeling framework through high-order outer product feature passing message.
Results from experiments on two widely used hypergraph datasets for 3-D visual object classification show the model's promising performance.
arXiv Detail & Related papers (2023-06-05T03:26:06Z) - EGRC-Net: Embedding-induced Graph Refinement Clustering Network [66.44293190793294]
We propose a novel graph clustering network called Embedding-Induced Graph Refinement Clustering Network (EGRC-Net)
EGRC-Net effectively utilizes the learned embedding to adaptively refine the initial graph and enhance the clustering performance.
Our proposed methods consistently outperform several state-of-the-art approaches.
arXiv Detail & Related papers (2022-11-19T09:08:43Z) - Augmentations in Hypergraph Contrastive Learning: Fabricated and
Generative [126.0985540285981]
We apply the contrastive learning approach from images/graphs (we refer to it as HyperGCL) to improve generalizability of hypergraph neural networks.
We fabricate two schemes to augment hyperedges with higher-order relations encoded, and adopt three augmentation strategies from graph-structured data.
We propose a hypergraph generative model to generate augmented views, and then an end-to-end differentiable pipeline to jointly learn hypergraph augmentations and model parameters.
arXiv Detail & Related papers (2022-10-07T20:12:20Z) - Hypergraph Convolutional Networks via Equivalency between Hypergraphs
and Undirected Graphs [59.71134113268709]
We present General Hypergraph Spectral Convolution(GHSC), a general learning framework that can handle EDVW and EIVW hypergraphs.
In this paper, we show that the proposed framework can achieve state-of-the-art performance.
Experiments from various domains including social network analysis, visual objective classification, protein learning demonstrate that the proposed framework can achieve state-of-the-art performance.
arXiv Detail & Related papers (2022-03-31T10:46:47Z) - Adaptive Neural Message Passing for Inductive Learning on Hypergraphs [21.606287447052757]
We present HyperMSG, a novel hypergraph learning framework.
It adapts to the data and task by learning an attention weight associated with each node's degree centrality.
It is robust and outperforms state-of-the-art hypergraph learning methods on a wide range of tasks and datasets.
arXiv Detail & Related papers (2021-09-22T12:24:02Z) - Learnable Hypergraph Laplacian for Hypergraph Learning [34.28748027233654]
HyperGraph Convolutional Neural Networks (HGCNNs) have demonstrated their potential in modeling high-order relations preserved in graph structured data.
We propose the first learning-based method tailored for constructing adaptive hypergraph structure, termed HypERgrAph Laplacian aDaptor (HERALD)
HERALD adaptively optimize the adjacency relationship between hypernodes and hyperedges in an end-to-end manner and thus the task-aware hypergraph is learned.
arXiv Detail & Related papers (2021-06-12T02:07:07Z) - Learnable Hypergraph Laplacian for Hypergraph Learning [34.28748027233654]
HyperGraph Convolutional Neural Networks (HGCNNs) have demonstrated their potential in modeling high-order relations preserved in graph structured data.
We propose the first learning-based method tailored for constructing adaptive hypergraph structure, termed HypERgrAph Laplacian aDaptor (HERALD)
HERALD adaptively optimize the adjacency relationship between hypernodes and hyperedges in an end-to-end manner and thus the task-aware hypergraph is learned.
arXiv Detail & Related papers (2021-06-10T12:37:55Z) - Residual Enhanced Multi-Hypergraph Neural Network [26.42547421121713]
HyperGraph Neural Network (HGNN) is the de-facto method for hypergraph representation learning.
We propose the Residual enhanced Multi-Hypergraph Neural Network, which can fuse multi-modal information from each hypergraph effectively.
arXiv Detail & Related papers (2021-05-02T14:53:32Z) - Graph Cross Networks with Vertex Infomax Pooling [69.38969610952927]
We propose a novel graph cross network (GXN) to achieve comprehensive feature learning from multiple scales of a graph.
Based on trainable hierarchical representations of a graph, GXN enables the interchange of intermediate features across scales to promote information flow.
arXiv Detail & Related papers (2020-10-05T06:34:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.