論文の概要: MambaIC: State Space Models for High-Performance Learned Image Compression
- arxiv url: http://arxiv.org/abs/2503.12461v1
- Date: Sun, 16 Mar 2025 11:32:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-18 12:29:16.138261
- Title: MambaIC: State Space Models for High-Performance Learned Image Compression
- Title(参考訳): MambaIC:高性能学習画像圧縮のための状態空間モデル
- Authors: Fanhu Zeng, Hao Tang, Yihua Shao, Siyu Chen, Ling Shao, Yan Wang,
- Abstract要約: 多数のフィールドをまたいだリアルタイム情報伝送には,高性能な画像圧縮アルゴリズムが不可欠である。
状態空間モデル(SSM)の長距離依存性の捕捉効果に着想を得て,SSMを利用して既存手法の計算不効率に対処する。
そこで本稿では,MambaICと呼ばれる洗練されたコンテキストモデリングによる画像圧縮手法を提案する。
- 参考スコア(独自算出の注目度): 53.991726013454695
- License:
- Abstract: A high-performance image compression algorithm is crucial for real-time information transmission across numerous fields. Despite rapid progress in image compression, computational inefficiency and poor redundancy modeling still pose significant bottlenecks, limiting practical applications. Inspired by the effectiveness of state space models (SSMs) in capturing long-range dependencies, we leverage SSMs to address computational inefficiency in existing methods and improve image compression from multiple perspectives. In this paper, we integrate the advantages of SSMs for better efficiency-performance trade-off and propose an enhanced image compression approach through refined context modeling, which we term MambaIC. Specifically, we explore context modeling to adaptively refine the representation of hidden states. Additionally, we introduce window-based local attention into channel-spatial entropy modeling to reduce potential spatial redundancy during compression, thereby increasing efficiency. Comprehensive qualitative and quantitative results validate the effectiveness and efficiency of our approach, particularly for high-resolution image compression. Code is released at https://github.com/AuroraZengfh/MambaIC.
- Abstract(参考訳): 多数のフィールドにわたるリアルタイム情報伝送において,高速な画像圧縮アルゴリズムが不可欠である。
画像圧縮の急速な進歩にもかかわらず、計算の非効率性と冗長性モデリングの貧弱さは依然として重大なボトルネックとなり、実用的な応用が制限される。
長距離依存関係のキャプチャにおける状態空間モデル(SSM)の有効性に着想を得て,SSMを利用して既存の手法の計算不効率に対処し,複数の視点から画像圧縮を改善する。
本稿では,効率と性能のトレードオフを改善するためのSSMの利点を統合するとともに,洗練されたコンテキストモデリングによる画像圧縮手法を提案する。
具体的には,隠れ状態の表現を適応的に洗練するためのコンテキストモデリングについて検討する。
さらに,圧縮時の空間冗長性を低減し,効率を向上させるため,チャネル空間エントロピーモデルにウィンドウベースの局所的注意を取り入れた。
総合的な質的,定量的な結果から,特に高解像度画像圧縮において,本手法の有効性と有効性が確認された。
コードはhttps://github.com/AuroraZengfh/MambaIC.comで公開されている。
関連論文リスト
- CMamba: Learned Image Compression with State Space Models [31.10785880342252]
本稿では,コンボリューションと状態空間モデル(SSM)をベースとした画像圧縮フレームワークを提案する。
具体的には、CMambaはContent-Adaptive SSM(CA-SSM)モジュールとContext-Aware Entropy(CAE)モジュールの2つの重要なコンポーネントを紹介している。
実験の結果,CMambaは高い速度歪み性能が得られることがわかった。
論文 参考訳(メタデータ) (2025-02-07T15:07:04Z) - Numerical Pruning for Efficient Autoregressive Models [87.56342118369123]
本稿では,デコーダのみを用いた変圧器を用いた自己回帰モデルの圧縮に着目する。
具体的には,ニュートン法とモジュールの数値スコアをそれぞれ計算する学習自由プルーニング法を提案する。
提案手法の有効性を検証するため,理論的支援と広範囲な実験を行った。
論文 参考訳(メタデータ) (2024-12-17T01:09:23Z) - Cross-Scan Mamba with Masked Training for Robust Spectral Imaging [51.557804095896174]
本研究では,空間スペクトルSSMを用いたクロススキャンマンバ(CS-Mamba)を提案する。
実験の結果, CS-Mambaは最先端の性能を達成し, マスク付きトレーニング手法によりスムーズな特徴を再構築し, 視覚的品質を向上させることができた。
論文 参考訳(メタデータ) (2024-08-01T15:14:10Z) - MambaVC: Learned Visual Compression with Selective State Spaces [74.29217829932895]
本稿では,SSMに基づくシンプルで強力で効率的な圧縮ネットワークであるMambaVCを紹介する。
MambaVC は2次元選択的走査 (2DSS) モジュールを備えた視覚状態空間 (VSS) ブロックを各ダウンサンプリング後の非線形活性化関数として開発する。
圧縮ベンチマークデータセットでは、MambaVCはより低い計算とメモリオーバーヘッドでより優れたレート歪み性能を達成する。
論文 参考訳(メタデータ) (2024-05-24T10:24:30Z) - Efficient Visual State Space Model for Image Deblurring [83.57239834238035]
畳み込みニューラルネットワーク(CNN)とビジョントランスフォーマー(ViT)は、画像復元において優れた性能を発揮している。
本稿では,画像のデブロアに対する簡易かつ効果的な視覚状態空間モデル(EVSSM)を提案する。
論文 参考訳(メタデータ) (2024-05-23T09:13:36Z) - Efficient Contextformer: Spatio-Channel Window Attention for Fast
Context Modeling in Learned Image Compression [1.9249287163937978]
学習画像に対する変換器に基づく自己回帰的文脈モデルである、効率的なコンテキストフォーマ(eContextformer)を導入する。
並列コンテキストモデリングのためのパッチワイド、チェッカー、チャンネルワイドのグルーピングテクニックを融合する。
モデル複雑性が145倍、デコード速度が210Cx向上し、Kodak、CLI、Tecnickデータセット上での平均ビット節約を実現している。
論文 参考訳(メタデータ) (2023-06-25T16:29:51Z) - Exploring Effective Mask Sampling Modeling for Neural Image Compression [171.35596121939238]
既存のニューラルイメージ圧縮手法の多くは、空間的冗長性を排除するために、ハイパープライアモデルやコンテキストモデルからのサイド情報に依存している。
近年の自然言語処理と高次視覚のための自己教師付き学習手法におけるマスクサンプリングモデルに着想を得て,ニューラル画像圧縮のための新しい事前学習戦略を提案する。
提案手法は,最先端画像圧縮法と比較して計算複雑性の低い競合性能を実現する。
論文 参考訳(メタデータ) (2023-06-09T06:50:20Z) - Wavelet Feature Maps Compression for Image-to-Image CNNs [3.1542695050861544]
本稿では,高分解能なアクティベーションマップ圧縮をポイントワイド畳み込みと統合した新しい手法を提案する。
比較的小さく、より優雅な性能劣化を伴う1-4ビットのアクティベーション量子化に匹敵する圧縮率を達成する。
論文 参考訳(メタデータ) (2022-05-24T20:29:19Z) - A Unified End-to-End Framework for Efficient Deep Image Compression [35.156677716140635]
本稿では,3つの新しい技術に基づくEDIC(Efficient Deep Image Compression)という統合フレームワークを提案する。
具体的には、学習に基づく画像圧縮のためのオートエンコーダスタイルのネットワークを設計する。
EDIC法は,映像圧縮性能を向上させるために,Deep Video Compression (DVC) フレームワークに容易に組み込むことができる。
論文 参考訳(メタデータ) (2020-02-09T14:21:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。