論文の概要: KDSelector: A Knowledge-Enhanced and Data-Efficient Model Selector Learning Framework for Time Series Anomaly Detection
- arxiv url: http://arxiv.org/abs/2503.12478v1
- Date: Sun, 16 Mar 2025 12:13:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-18 12:33:00.256635
- Title: KDSelector: A Knowledge-Enhanced and Data-Efficient Model Selector Learning Framework for Time Series Anomaly Detection
- Title(参考訳): KDSelector: 時系列異常検出のための知識強化およびデータ効率の良いモデルセレクタ学習フレームワーク
- Authors: Zhiyu Liang, Dongrui Cai, Chenyuan Zhang, Zheng Liang, Chen Liang, Bo Zheng, Shi Qiu, Jin Wang, Hongzhi Wang,
- Abstract要約: 現実世界のアプリケーションでは、高度に異質な時系列に対して最高のTSADモデルは存在しない。
KDSセレクタを内部としたTSADモデル選択システムを開発し、ユーザがセレクタの精度とトレーニング速度をどのように向上するかを示す。
- 参考スコア(独自算出の注目度): 33.69375997004682
- License:
- Abstract: Model selection has been raised as an essential problem in the area of time series anomaly detection (TSAD), because there is no single best TSAD model for the highly heterogeneous time series in real-world applications. However, despite the success of existing model selection solutions that train a classification model (especially neural network, NN) using historical data as a selector to predict the correct TSAD model for each series, the NN-based selector learning methods used by existing solutions do not make full use of the knowledge in the historical data and require iterating over all training samples, which limits the accuracy and training speed of the selector. To address these limitations, we propose KDSelector, a novel knowledge-enhanced and data-efficient framework for learning the NN-based TSAD model selector, of which three key components are specifically designed to integrate available knowledge into the selector and dynamically prune less important and redundant samples during the learning. We develop a TSAD model selection system with KDSelector as the internal, to demonstrate how users improve the accuracy and training speed of their selectors by using KDSelector as a plug-and-play module. Our demonstration video is hosted at https://youtu.be/2uqupDWvTF0.
- Abstract(参考訳): 時系列異常検出(TSAD)分野において,モデル選択は重要な問題として提起されてきた。
しかし、各系列の正しいTSADモデルを予測するために、履歴データを用いて分類モデル(特にニューラルネットワーク、NN)をトレーニングする既存のモデル選択ソリューションの成功にもかかわらず、既存のソリューションで使われているNNベースのセレクタ学習方法は、履歴データの知識を十分に活用せず、全てのトレーニングサンプルを反復する必要があるため、セレクタの精度とトレーニング速度が制限される。
これらの制約に対処するために、我々は、NNベースのTSADモデルセレクタを学習するための新しい知識強化およびデータ効率のフレームワークであるKDSelectorを提案する。
KDSセレクタを内部とするTSADモデル選択システムを開発し、KDSセレクタをプラグアンドプレイモジュールとして使用することにより、ユーザがセレクタの精度とトレーニング速度をどのように向上するかを示す。
デモビデオはhttps://youtu.be/2uqupDWvTF0.comで公開されている。
関連論文リスト
- Enhancing Online Continual Learning with Plug-and-Play State Space Model and Class-Conditional Mixture of Discretization [72.81319836138347]
オンライン連続学習(OCL)は、以前に学習したタスクの知識を保持しながら、一度だけ現れるデータストリームから新しいタスクを学習することを目指している。
既存の方法の多くはリプレイに依存しており、正規化や蒸留によるメモリ保持の強化に重点を置いている。
既存のほとんどのメソッドに組み込むことができ、適応性を直接改善できるプラグイン・アンド・プレイモジュールであるS6MODを導入する。
論文 参考訳(メタデータ) (2024-12-24T05:25:21Z) - Learning the Regularization Strength for Deep Fine-Tuning via a Data-Emphasized Variational Objective [4.453137996095194]
グリッド検索は計算コストが高く、検証セットを彫り出す必要があり、実践者は候補値を指定する必要がある。
提案手法はグリッド探索の3つの欠点をすべて克服する。
いくつかのデータセットにおける画像分類タスクの有効性を実証し,既存の手法に匹敵するホールドアウト精度を得た。
論文 参考訳(メタデータ) (2024-10-25T16:32:11Z) - Diversified Batch Selection for Training Acceleration [68.67164304377732]
オンラインバッチ選択として知られる一般的な研究ラインでは、トレーニングプロセス中の情報サブセットの選択について検討している。
バニラ参照モデルフリーメソッドは、独立してデータをサンプリング的にスコア付けし、選択する。
DivBS(Diversified Batch Selection)を提案する。
論文 参考訳(メタデータ) (2024-06-07T12:12:20Z) - A Two-Phase Recall-and-Select Framework for Fast Model Selection [13.385915962994806]
本稿では,2相モデル選択フレームワークを提案する。
これは、ベンチマークデータセット上でモデルのトレーニングパフォーマンスを活用することにより、堅牢なモデルを選択する効率を高めることを目的としている。
提案手法は,従来のベースライン法に比べて約3倍の速度でハイパフォーマンスモデルの選択を容易にすることが実証された。
論文 参考訳(メタデータ) (2024-03-28T14:44:44Z) - Budgeted Online Model Selection and Fine-Tuning via Federated Learning [26.823435733330705]
オンラインモデル選択では、候補モデルのセットからモデルを選択して、データのストリームで予測を実行する。
その後の候補モデルの選択は、パフォーマンスに決定的な影響を与えます。
本稿では,学習者グループ(クライアント)が十分なメモリを持つサーバと対話するオンラインフェデレーションモデル選択フレームワークを提案する。
提案したアルゴリズムを用いて、クライアントとサーバは微調整モデルと協調して非定常環境に適応する。
論文 参考訳(メタデータ) (2024-01-19T04:02:49Z) - Towards Free Data Selection with General-Purpose Models [71.92151210413374]
望ましいデータ選択アルゴリズムは、限られたアノテーション予算の有用性を最大化するために、最も情報性の高いサンプルを効率的に選択することができる。
アクティブな学習手法で表現された現在のアプローチは、通常、時間を要するモデルのトレーニングとバッチデータ選択を繰り返し繰り返す、面倒なパイプラインに従う。
FreeSelは重いバッチ選択プロセスをバイパスし、効率を大幅に改善し、既存のアクティブラーニングメソッドよりも530倍高速である。
論文 参考訳(メタデータ) (2023-09-29T15:50:14Z) - Skill-Based Few-Shot Selection for In-Context Learning [123.26522773708683]
Skill-KNNは、文脈内学習のためのスキルベースの少ショット選択手法である。
モデルはトレーニングや微調整を必要とせず、頻繁に銀行を拡大したり変更したりするのに適している。
5つのドメイン間セマンティックパーシングデータセットと6つのバックボーンモデルによる実験結果から、Skill-KNNは既存の手法よりも大幅に優れていることが示された。
論文 参考訳(メタデータ) (2023-05-23T16:28:29Z) - MILO: Model-Agnostic Subset Selection Framework for Efficient Model
Training and Tuning [68.12870241637636]
モデル学習からサブセット選択を分離するモデルに依存しないサブセット選択フレームワークMILOを提案する。
実験結果から、MILOはモデルを3ドル(約3,300円)でトレーニングし、ハイパーパラメータを20ドル(約2,300円)でチューニングできます。
論文 参考訳(メタデータ) (2023-01-30T20:59:30Z) - Client Selection for Federated Bayesian Learning [6.055038050790775]
我々は,KSD(Kernelized Stein Discrepancy)とHilbert内積(HIP)に基づくDSVGDの選択方式を提案する。
各種学習課題やデータセットを用いて,モデル精度,収束速度,安定性の観点から,従来のスキームとの比較を行った。
論文 参考訳(メタデータ) (2022-12-11T12:37:31Z) - ALT-MAS: A Data-Efficient Framework for Active Testing of Machine
Learning Algorithms [58.684954492439424]
少量のラベル付きテストデータのみを用いて機械学習モデルを効率的にテストする新しいフレームワークを提案する。
ベイズニューラルネットワーク(bnn)を用いたモデルアンダーテストの関心指標の推定が目的である。
論文 参考訳(メタデータ) (2021-04-11T12:14:04Z) - Auto-Ensemble: An Adaptive Learning Rate Scheduling based Deep Learning
Model Ensembling [11.324407834445422]
本稿では,ディープラーニングモデルのチェックポイントを収集し,それらを自動的にアンサンブルする自動アンサンブル(AE)を提案する。
この手法の利点は、一度のトレーニングで学習率をスケジューリングすることで、モデルを様々な局所最適化に収束させることである。
論文 参考訳(メタデータ) (2020-03-25T08:17:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。