論文の概要: BS-Mamba for Black-Soil Area Detection On the Qinghai-Tibetan Plateau
- arxiv url: http://arxiv.org/abs/2503.12495v1
- Date: Sun, 16 Mar 2025 13:11:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-18 12:31:02.095299
- Title: BS-Mamba for Black-Soil Area Detection On the Qinghai-Tibetan Plateau
- Title(参考訳): 清海・チベット高原における黒土地域検出のためのBS-Mamba
- Authors: Xuan Ma, Zewen Lv, Chengcai Ma, Tao Zhang, Yuelan Xin, Kun Zhan,
- Abstract要約: 清海・チベット高原(QTP)の過度に荒廃した草原では, 修復作業の指針として, 正確な評価が必要である。
専門家の指導のもと,新たに作成したQTPブラック土壌データセットを注釈付きで提示する。
本稿では,UAVリモートセンシング画像を用いた黒土領域検出のためのニューラルネットワークモデルBS-Mambaを紹介する。
- 参考スコア(独自算出の注目度): 2.9234762332801987
- License:
- Abstract: Extremely degraded grassland on the Qinghai-Tibetan Plateau (QTP) presents a significant environmental challenge due to overgrazing, climate change, and rodent activity, which degrade vegetation cover and soil quality. These extremely degraded grassland on QTP, commonly referred to as black-soil area, require accurate assessment to guide effective restoration efforts. In this paper, we present a newly created QTP black-soil dataset, annotated under expert guidance. We introduce a novel neural network model, BS-Mamba, specifically designed for the black-soil area detection using UAV remote sensing imagery. The BS-Mamba model demonstrates higher accuracy in identifying black-soil area across two independent test datasets than the state-of-the-art models. This research contributes to grassland restoration by providing an efficient method for assessing the extent of black-soil area on the QTP.
- Abstract(参考訳): 青海・チベット高原(QTP)の草原は,過放牧,気候変化,除草活動などにより,植生の被覆や土壌の質が低下し,環境に重大な課題が生じる。
これらの非常に荒廃した草原は、一般に黒土地帯と呼ばれ、効果的な修復作業の指針として正確な評価が必要である。
本稿では,専門家の指導のもと,新たに作成したQTPブラックソイルデータセットについて報告する。
本稿では,UAVリモートセンシング画像を用いた黒土領域検出のためのニューラルネットワークモデルBS-Mambaを紹介する。
BS-Mambaモデルは、最先端のモデルよりも、2つの独立したテストデータセットにわたるブラック土壌領域の同定において高い精度を示す。
本研究は,QTPにおける黒土面積の効率的な評価方法を提供することにより,草地修復に寄与する。
関連論文リスト
- PlantCamo: Plant Camouflage Detection [60.685139083469956]
本稿では,植物カモフラージュ検出(PCD)の課題を紹介する。
この問題に対処するため,カモフラージュ植物を用いた1,250枚の画像からなるPlantCamoデータセットを導入した。
提案したデータセット上で20以上の最先端CODモデルを用いて大規模なベンチマーク研究を行う。
マルチスケールのグローバル機能拡張と改良により,PCNetはパフォーマンスを上回りました。
論文 参考訳(メタデータ) (2024-10-23T06:51:59Z) - Low-Cost Tree Crown Dieback Estimation Using Deep Learning-Based Segmentation [0.0]
深層学習と植生指標に基づくアプローチを用いて,LiDARなどの高価な機器を必要とせずに,RGB空中データからクラウンダイバックを評価する。
基礎となるMask R-CNNモデルのさらなる技術開発を必要とせず、高い全体セグメント化精度(mAP:0.519)を得る。
本研究は,森林ダイバックモニタリングの網羅性,速度,コストを改善するため,ディープラーニングの適用を含む自動データ収集および処理の可能性を示すものである。
論文 参考訳(メタデータ) (2024-09-12T16:03:56Z) - Thinking Racial Bias in Fair Forgery Detection: Models, Datasets and Evaluations [63.52709761339949]
最初に、Fair Forgery Detection(FairFD)データセットと呼ばれる専用のデータセットをコントリビュートし、SOTA(Public State-of-the-art)メソッドの人種的偏見を証明する。
我々は、偽りの結果を避けることができる平均的メトリクスと実用正規化メトリクスを含む新しいメトリクスを設計する。
また,有効で堅牢な後処理技術であるBias Pruning with Fair Activations (BPFA)も提案する。
論文 参考訳(メタデータ) (2024-07-19T14:53:18Z) - BonnBeetClouds3D: A Dataset Towards Point Cloud-based Organ-level
Phenotyping of Sugar Beet Plants under Field Conditions [30.27773980916216]
農業生産は今後数十年間、気候変動と持続可能性の必要性によって深刻な課題に直面している。
自律無人航空機(UAV)による作物のモニタリングと、ロボットによる非化学雑草によるフィールド管理の進歩は、これらの課題に対処するのに有用である。
表現型化と呼ばれる植物形質の分析は、植物の育種に不可欠な活動であるが、大量の手作業が伴う。
論文 参考訳(メタデータ) (2023-12-22T14:06:44Z) - Vision Transformers, a new approach for high-resolution and large-scale
mapping of canopy heights [50.52704854147297]
分類(離散化)と連続損失関数を最適化した新しい視覚変換器(ViT)モデルを提案する。
このモデルは、従来使用されていた畳み込みベースのアプローチ(ConvNet)よりも、連続損失関数のみで最適化された精度が向上する。
論文 参考訳(メタデータ) (2023-04-22T22:39:03Z) - Neuroevolution-based Classifiers for Deforestation Detection in Tropical
Forests [62.997667081978825]
森林破壊や荒廃により、毎年何百万ヘクタールもの熱帯林が失われる。
監視・森林破壊検知プログラムは、犯罪者の予防・処罰のための公共政策に加えて、使用されている。
本稿では,熱帯林の森林破壊検出作業におけるニューロ進化技術(NEAT)に基づくパターン分類器の利用を提案する。
論文 参考訳(メタデータ) (2022-08-23T16:04:12Z) - Information fusion approach for biomass estimation in a plateau
mountainous forest using a synergistic system comprising UAS-based digital
camera and LiDAR [9.944631732226657]
本研究の目的は,高原山岳森林保護区の地上バイオマス(AGB)の定量化である。
我々はDAP(Digital Aero Photogrammetry)を用いて,速度,空間分解能,低コストの独特な利点を生かした。
マルチスペクトル画像から得られたCHMとスペクトル特性に基づいて,関心領域のAGBを相当のコスト効率で推定,マッピングした。
論文 参考訳(メタデータ) (2022-04-14T04:04:59Z) - Country-wide Retrieval of Forest Structure From Optical and SAR
Satellite Imagery With Bayesian Deep Learning [74.94436509364554]
本研究では,10mの解像度で森林構造変数を高密度に推定するベイズ深層学習手法を提案する。
本手法は,Sentinel-2光画像とSentinel-1合成開口レーダ画像を5種類の森林構造変数のマップに変換する。
ノルウェーを横断する41の空中レーザー走査ミッションの基準データに基づいて、我々のモデルを訓練し、テストする。
論文 参考訳(メタデータ) (2021-11-25T16:21:28Z) - Potato Crop Stress Identification in Aerial Images using Deep
Learning-based Object Detection [60.83360138070649]
本稿では, 深層ニューラルネットワークを用いたジャガイモの空中画像解析手法を提案する。
主な目的は、植物レベルでの健康作物とストレス作物の自動空間認識を実証することである。
実験により、フィールド画像中の健康植物とストレス植物を識別し、平均Dice係数0.74を達成できることを示した。
論文 参考訳(メタデータ) (2021-06-14T21:57:40Z) - UAV and Machine Learning Based Refinement of a Satellite-Driven
Vegetation Index for Precision Agriculture [0.8399688944263843]
本稿では,深層学習技術に基づく新しい衛星画像補正フレームワークを提案する。
無人航空機(UAV)が取得した高解像度画像から得られる情報を適切に活用する。
セラルンガ・ダルバ (Serralunga d'Alba) のブドウ園は、検証のためのケーススタディとして選ばれた。
論文 参考訳(メタデータ) (2020-04-29T18:34:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。