論文の概要: Low-Cost Tree Crown Dieback Estimation Using Deep Learning-Based Segmentation
- arxiv url: http://arxiv.org/abs/2409.08171v1
- Date: Thu, 12 Sep 2024 16:03:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-13 15:55:10.006644
- Title: Low-Cost Tree Crown Dieback Estimation Using Deep Learning-Based Segmentation
- Title(参考訳): ディープラーニングベースセグメンテーションを用いた低コスト木クラウンダイバック推定
- Authors: M. J. Allen, D. Moreno-Fernández, P. Ruiz-Benito, S. W. D. Grieve, E. R. Lines,
- Abstract要約: 深層学習と植生指標に基づくアプローチを用いて,LiDARなどの高価な機器を必要とせずに,RGB空中データからクラウンダイバックを評価する。
基礎となるMask R-CNNモデルのさらなる技術開発を必要とせず、高い全体セグメント化精度(mAP:0.519)を得る。
本研究は,森林ダイバックモニタリングの網羅性,速度,コストを改善するため,ディープラーニングの適用を含む自動データ収集および処理の可能性を示すものである。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The global increase in observed forest dieback, characterised by the death of tree foliage, heralds widespread decline in forest ecosystems. This degradation causes significant changes to ecosystem services and functions, including habitat provision and carbon sequestration, which can be difficult to detect using traditional monitoring techniques, highlighting the need for large-scale and high-frequency monitoring. Contemporary developments in the instruments and methods to gather and process data at large-scales mean this monitoring is now possible. In particular, the advancement of low-cost drone technology and deep learning on consumer-level hardware provide new opportunities. Here, we use an approach based on deep learning and vegetation indices to assess crown dieback from RGB aerial data without the need for expensive instrumentation such as LiDAR. We use an iterative approach to match crown footprints predicted by deep learning with field-based inventory data from a Mediterranean ecosystem exhibiting drought-induced dieback, and compare expert field-based crown dieback estimation with vegetation index-based estimates. We obtain high overall segmentation accuracy (mAP: 0.519) without the need for additional technical development of the underlying Mask R-CNN model, underscoring the potential of these approaches for non-expert use and proving their applicability to real-world conservation. We also find colour-coordinate based estimates of dieback correlate well with expert field-based estimation. Substituting ground truth for Mask R-CNN model predictions showed negligible impact on dieback estimates, indicating robustness. Our findings demonstrate the potential of automated data collection and processing, including the application of deep learning, to improve the coverage, speed and cost of forest dieback monitoring.
- Abstract(参考訳): 森林の枯死の世界的な増加は、樹木の葉の死によって特徴づけられ、森林生態系の急激な衰退を招いた。
この劣化は生態系のサービスや機能に大きな変化をもたらし、例えば生息地の供給や炭素の隔離は従来のモニタリング技術では検出が困難であり、大規模で高周波なモニタリングの必要性を強調している。
大規模にデータを収集・処理するための機器や手法の現代的発展は、この監視が可能になったことを意味している。
特に、低価格ドローン技術の進歩と消費者レベルのハードウェアにおけるディープラーニングは、新たな機会を提供する。
本稿では,深層学習と植生指標に基づくアプローチを用いて,LiDARなどの高価な機器を必要とせずに,RGB空中データからクラウンダイバックを評価する。
深層学習によって予測されるクラウンフットプリントと、干ばつによるダイバックを示す地中海生態系のフィールドベース在庫データとを反復的にマッチングし、専門的なフィールドベースクラウンダイバック推定と植生指標に基づく推定を比較した。
我々は、基礎となるMask R-CNNモデルのさらなる技術開発を必要とせずに、高い全体セグメント化精度(mAP:0.519)を得る。
また,色座標に基づくダイバック推定は,専門家のフィールドベース推定とよく相関している。
Mask R-CNNモデル予測のための基礎的真実の置換は、ダイバック推定に無視できない影響を示し、ロバスト性を示している。
本研究は,森林ダイバックモニタリングの網羅性,速度,コストを改善するため,ディープラーニングの適用を含む自動データ収集および処理の可能性を示すものである。
関連論文リスト
- Quanv4EO: Empowering Earth Observation by means of Quanvolutional Neural Networks [62.12107686529827]
本稿は、大量のリモートセンシングデータの処理において、量子コンピューティング技術を活用することへの大きなシフトを取り上げる。
提案したQuanv4EOモデルでは,多次元EOデータを前処理するための準進化法が導入された。
主要な知見は,提案モデルが画像分類の精度を維持するだけでなく,EOのユースケースの約5%の精度向上を図っていることを示唆している。
論文 参考訳(メタデータ) (2024-07-24T09:11:34Z) - SatBird: Bird Species Distribution Modeling with Remote Sensing and
Citizen Science Data [68.2366021016172]
本稿では,市民科学データベース eBird の観測データから得られたラベルを用いた,米国内の位置情報のサテライトデータセットである SatBird について述べる。
ケニアでは低データのレシエーションを表すデータセットも提供しています。
リモートセンシングタスクのためのSOTAモデルを含む、データセットのベースラインセットをベンチマークします。
論文 参考訳(メタデータ) (2023-11-02T02:00:27Z) - Long-term drought prediction using deep neural networks based on geospatial weather data [75.38539438000072]
農業計画や保険には1年前から予測される高品質の干ばつが不可欠だ。
私たちは、体系的なエンドツーエンドアプローチを採用するエンドツーエンドアプローチを導入することで、干ばつデータに取り組みます。
主な発見は、TransformerモデルであるEarthFormerが、正確な短期(最大6ヶ月)の予測を行う際の例外的なパフォーマンスである。
論文 参考訳(メタデータ) (2023-09-12T13:28:06Z) - Agave crop segmentation and maturity classification with deep learning
data-centric strategies using very high-resolution satellite imagery [101.18253437732933]
超高解像度衛星画像を用いたAgave tequilana Weber azul crop segmentation and mature classificationを提案する。
実世界の深層学習問題を,作物の選別という非常に具体的な文脈で解決する。
結果として得られた正確なモデルにより、大規模地域で生産予測を行うことができる。
論文 参考訳(メタデータ) (2023-03-21T03:15:29Z) - Extreme Gradient Boosting for Yield Estimation compared with Deep
Learning Approaches [0.0]
本稿では,XGBoost(Extreme Gradient Boosting, エクストリームグラディエントブースティング)を利得予測に利用するための,リモートセンシング画像を特徴ベース表現に処理するためのパイプラインを提案する。
米国におけるダイズ収量予測の比較評価は,Deep Learningに基づく最先端の収量予測システムと比較して有望な予測精度を示している。
論文 参考訳(メタデータ) (2022-08-26T12:48:18Z) - Unsupervised Spike Depth Estimation via Cross-modality Cross-domain Knowledge Transfer [53.413305467674434]
スパイク深度推定をサポートするためにオープンソースのRGBデータを導入し,そのアノテーションと空間情報を活用する。
教師なしスパイク深さ推定を実現するために,クロスモーダルクロスドメイン(BiCross)フレームワークを提案する。
提案手法は,RGB指向の教師なし深度推定法と比較して,最先端(SOTA)性能を実現する。
論文 参考訳(メタデータ) (2022-08-26T09:35:20Z) - Neuroevolution-based Classifiers for Deforestation Detection in Tropical
Forests [62.997667081978825]
森林破壊や荒廃により、毎年何百万ヘクタールもの熱帯林が失われる。
監視・森林破壊検知プログラムは、犯罪者の予防・処罰のための公共政策に加えて、使用されている。
本稿では,熱帯林の森林破壊検出作業におけるニューロ進化技術(NEAT)に基づくパターン分類器の利用を提案する。
論文 参考訳(メタデータ) (2022-08-23T16:04:12Z) - Generative models-based data labeling for deep networks regression:
application to seed maturity estimation from UAV multispectral images [3.6868861317674524]
種子の成熟度モニタリングは、気候変動とより制限的な慣行による農業における課題の増加である。
従来の手法は、フィールドでの限られたサンプリングと実験室での分析に基づいている。
マルチスペクトルUAV画像を用いたパセリ種子の成熟度推定手法の提案と,自動ラベリングのための新しいアプローチを提案する。
論文 参考訳(メタデータ) (2022-08-09T09:06:51Z) - A Real-time Edge-AI System for Reef Surveys [6.070670469403929]
ソーン・オブ・ソーン・スターフィッシュ(英: Crown-of-Thorn Starfish、COTS)は、グレートバリアリーフでサンゴが失われた主な原因である。
我々は,COTSモニタリングのためのエッジデバイス上で,機械学習に基づく総合的な水中データ収集とキュレーションシステムを提案する。
論文 参考訳(メタデータ) (2022-08-01T04:06:14Z) - Deep Learning Based 3D Point Cloud Regression for Estimating Forest
Biomass [15.956463815168034]
森林バイオマス資源の知識とその開発は、効果的な気候変動対策を実施する上で重要である。
空中LiDARを用いたリモートセンシングは、大規模に植生のバイオマスを測定するのに利用できる。
本稿では,3次元LiDAR点雲データから,木材の体積,地上バイオマス(AGB)および炭素を直接推定する深層学習システムを提案する。
論文 参考訳(メタデータ) (2021-12-21T16:26:13Z) - Detection and Prediction of Nutrient Deficiency Stress using
Longitudinal Aerial Imagery [3.5417999811721677]
早期, 栄養不足ストレス(NDS)の精密検出は, 環境影響の精度だけでなく, 経済的にも重要である。
我々は,高分解能空中画像のシーケンスを収集し,セマンティクスセグメンテーションモデルを構築し,フィールド全体のndsの検出と予測を行う。
この研究は、リモートセンシングと農業の深層学習の発展に寄与し、経済と持続可能性に関する重要な社会的課題に対処している。
論文 参考訳(メタデータ) (2020-12-17T15:06:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。