Time-EAPCR-T: A Universal Deep Learning Approach for Anomaly Detection in Industrial Equipment
- URL: http://arxiv.org/abs/2503.12534v1
- Date: Sun, 16 Mar 2025 14:54:34 GMT
- Title: Time-EAPCR-T: A Universal Deep Learning Approach for Anomaly Detection in Industrial Equipment
- Authors: Huajie Liang, Di Wang, Yuchao Lu, Mengke Song, Lei Liu, Ling An, Ying Liang, Xingjie Ma, Zhenyu Zhang, Chichun Zhou,
- Abstract summary: Industrial data exhibit characteristics such as multi-source heterogeneity, nonlinearity, strong coupling, and temporal interactions.<n>Traditional machine learning approaches often struggle with such complex data due to limitations in processing capacity and generalisation ability.<n>This study introduces a new model, Time-EAPCR-T, where Transformer replaces the LSTM module in the time-series processing component of Time-EAPCR.
- Score: 10.980851641662662
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the advancement of Industry 4.0, intelligent manufacturing extensively employs sensors for real-time multidimensional data collection, playing a crucial role in equipment monitoring, process optimisation, and efficiency enhancement. Industrial data exhibit characteristics such as multi-source heterogeneity, nonlinearity, strong coupling, and temporal interactions, while also being affected by noise interference. These complexities make it challenging for traditional anomaly detection methods to extract key features, impacting detection accuracy and stability. Traditional machine learning approaches often struggle with such complex data due to limitations in processing capacity and generalisation ability, making them inadequate for practical applications. While deep learning feature extraction modules have demonstrated remarkable performance in image and text processing, they remain ineffective when applied to multi-source heterogeneous industrial data lacking explicit correlations. Moreover, existing multi-source heterogeneous data processing techniques still rely on dimensionality reduction and feature selection, which can lead to information loss and difficulty in capturing high-order interactions. To address these challenges, this study applies the EAPCR and Time-EAPCR models proposed in previous research and introduces a new model, Time-EAPCR-T, where Transformer replaces the LSTM module in the time-series processing component of Time-EAPCR. This modification effectively addresses multi-source data heterogeneity, facilitates efficient multi-source feature fusion, and enhances the temporal feature extraction capabilities of multi-source industrial data.Experimental results demonstrate that the proposed method outperforms existing approaches across four industrial datasets, highlighting its broad application potential.
Related papers
- SCENT: Robust Spatiotemporal Learning for Continuous Scientific Data via Scalable Conditioned Neural Fields [11.872753517172555]
We present SCENT, a novel framework for scalable and continuity-informed modeling learning.
SCENT unifies representation, reconstruction, and forecasting within a single architecture.
We validate SCENT through extensive simulations and real-world experiments, demonstrating state-of-the-art performance.
arXiv Detail & Related papers (2025-04-16T17:17:31Z) - Multivariate Time Series Anomaly Detection in Industry 5.0 [0.5617572524191751]
The ever-increasing sensorization of manufacturing lines makes processes more observable, but also poses the challenge of continuously analyzing vast amounts of time series data.
A promising approach consists of combining an embedding model with other Machine Learning algorithms to enhance the overall performance in detecting anomalies.
We tested our solution in a real industrial use case, using data collected from a Bonfiglioli plant.
arXiv Detail & Related papers (2025-03-20T08:38:58Z) - RAAD-LLM: Adaptive Anomaly Detection Using LLMs and RAG Integration [2.879328762187361]
We present RAAD-LLM, a novel framework for adaptive anomaly detection.<n>By effectively utilizing domain-specific knowledge, RAAD-LLM enhances the detection of anomalies in time series data.<n>Results show significant improvements over our previous model with an accuracy increase from 70.7% to 88.6% on the real-world dataset.
arXiv Detail & Related papers (2025-03-04T17:20:43Z) - Denoising and Adaptive Online Vertical Federated Learning for Sequential Multi-Sensor Data in Industrial Internet of Things [22.208830538149606]
This study focuses on an industrial assembly line scenario where multiple sensors sequentially collect real-time data.<n>We propose the Denoising and Adaptive Online Vertical Federated Learning (DAO-VFL) algorithm.
arXiv Detail & Related papers (2025-01-03T08:22:15Z) - Towards Resource-Efficient Federated Learning in Industrial IoT for Multivariate Time Series Analysis [50.18156030818883]
Anomaly and missing data constitute a thorny problem in industrial applications.
Deep learning enabled anomaly detection has emerged as a critical direction.
The data collected in edge devices contain user privacy.
arXiv Detail & Related papers (2024-11-06T15:38:31Z) - AAD-LLM: Adaptive Anomaly Detection Using Large Language Models [35.286105732902065]
The research aims to improve the transferability of anomaly detection models by leveraging Large Language Models (LLMs)
The research also seeks to enable more collaborative decision-making between the model and plant operators.
arXiv Detail & Related papers (2024-11-01T13:43:28Z) - Integration of Domain Expert-Centric Ontology Design into the CRISP-DM for Cyber-Physical Production Systems [45.05372822216111]
Methods from Machine Learning (ML) and Data Mining (DM) have proven to be promising in extracting complex and hidden patterns from the data collected.
However, such data-driven projects, usually performed with the Cross-Industry Standard Process for Data Mining (CRISPDM), often fail due to the disproportionate amount of time needed for understanding and preparing the data.
This contribution intends present an integrated approach so that data scientists are able to more quickly and reliably gain insights into the CPPS challenges.
arXiv Detail & Related papers (2023-07-21T15:04:00Z) - HFedMS: Heterogeneous Federated Learning with Memorable Data Semantics
in Industrial Metaverse [49.1501082763252]
This paper presents HFEDMS for incorporating practical FL into the emerging Industrial Metaverse.
It reduces data heterogeneity through dynamic grouping and training mode conversion.
Then, it compensates for the forgotten knowledge by fusing compressed historical data semantics.
Experiments have been conducted on the streamed non-i.i.d. FEMNIST dataset using 368 simulated devices.
arXiv Detail & Related papers (2022-11-07T04:33:24Z) - DeepTimeAnomalyViz: A Tool for Visualizing and Post-processing Deep
Learning Anomaly Detection Results for Industrial Time-Series [88.12892448747291]
We introduce the DeTAVIZ interface, which is a web browser based visualization tool for quick exploration and assessment of feasibility of DL based anomaly detection in a given problem.
DeTAVIZ allows the user to easily and quickly iterate through multiple post processing options and compare different models, and allows for manual optimisation towards a chosen metric.
arXiv Detail & Related papers (2021-09-21T10:38:26Z) - Automated Machine Learning Techniques for Data Streams [91.3755431537592]
This paper surveys the state-of-the-art open-source AutoML tools, applies them to data collected from streams, and measures how their performance changes over time.
The results show that off-the-shelf AutoML tools can provide satisfactory results but in the presence of concept drift, detection or adaptation techniques have to be applied to maintain the predictive accuracy over time.
arXiv Detail & Related papers (2021-06-14T11:42:46Z) - Anomaly Detection Based on Selection and Weighting in Latent Space [73.01328671569759]
We propose a novel selection-and-weighting-based anomaly detection framework called SWAD.
Experiments on both benchmark and real-world datasets have shown the effectiveness and superiority of SWAD.
arXiv Detail & Related papers (2021-03-08T10:56:38Z) - Deep Cellular Recurrent Network for Efficient Analysis of Time-Series
Data with Spatial Information [52.635997570873194]
This work proposes a novel deep cellular recurrent neural network (DCRNN) architecture to process complex multi-dimensional time series data with spatial information.
The proposed architecture achieves state-of-the-art performance while utilizing substantially less trainable parameters when compared to comparable methods in the literature.
arXiv Detail & Related papers (2021-01-12T20:08:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.