Denoising and Adaptive Online Vertical Federated Learning for Sequential Multi-Sensor Data in Industrial Internet of Things
- URL: http://arxiv.org/abs/2501.01693v1
- Date: Fri, 03 Jan 2025 08:22:15 GMT
- Title: Denoising and Adaptive Online Vertical Federated Learning for Sequential Multi-Sensor Data in Industrial Internet of Things
- Authors: Heqiang Wang, Xiaoxiong Zhong, Kang Liu, Fangming Liu, Weizhe Zhang,
- Abstract summary: This study focuses on an industrial assembly line scenario where multiple sensors sequentially collect real-time data.
We propose the Denoising and Adaptive Online Vertical Federated Learning (DAO-VFL) algorithm.
- Score: 22.208830538149606
- License:
- Abstract: With the continuous improvement in the computational capabilities of edge devices such as intelligent sensors in the Industrial Internet of Things, these sensors are no longer limited to mere data collection but are increasingly capable of performing complex computational tasks. This advancement provides both the motivation and the foundation for adopting distributed learning approaches. This study focuses on an industrial assembly line scenario where multiple sensors, distributed across various locations, sequentially collect real-time data characterized by distinct feature spaces. To leverage the computational potential of these sensors while addressing the challenges of communication overhead and privacy concerns inherent in centralized learning, we propose the Denoising and Adaptive Online Vertical Federated Learning (DAO-VFL) algorithm. Tailored to the industrial assembly line scenario, DAO-VFL effectively manages continuous data streams and adapts to shifting learning objectives. Furthermore, it can address critical challenges prevalent in industrial environment, such as communication noise and heterogeneity of sensor capabilities. To support the proposed algorithm, we provide a comprehensive theoretical analysis, highlighting the effects of noise reduction and adaptive local iteration decisions on the regret bound. Experimental results on two real-world datasets further demonstrate the superior performance of DAO-VFL compared to benchmarks algorithms.
Related papers
- Towards Resource-Efficient Federated Learning in Industrial IoT for Multivariate Time Series Analysis [50.18156030818883]
Anomaly and missing data constitute a thorny problem in industrial applications.
Deep learning enabled anomaly detection has emerged as a critical direction.
The data collected in edge devices contain user privacy.
arXiv Detail & Related papers (2024-11-06T15:38:31Z) - How Important are Data Augmentations to Close the Domain Gap for Object Detection in Orbit? [15.550663626482903]
We investigate the efficacy of data augmentations to close the domain gap in spaceborne computer vision.
We propose two novel data augmentations specifically developed to emulate the visual effects observed in orbital imagery.
arXiv Detail & Related papers (2024-10-21T08:24:46Z) - Physics-Enhanced Graph Neural Networks For Soft Sensing in Industrial Internet of Things [6.374763930914524]
The Industrial Internet of Things (IIoT) is reshaping manufacturing, industrial processes, and infrastructure management.
achieving highly reliable IIoT can be hindered by factors such as the cost of installing large numbers of sensors, limitations in retrofitting existing systems with sensors, or harsh environmental conditions that may make sensor installation impractical.
We propose physics-enhanced Graph Neural Networks (GNNs), which integrate principles of physics into graph-based methodologies.
arXiv Detail & Related papers (2024-04-11T18:03:59Z) - CODA: A COst-efficient Test-time Domain Adaptation Mechanism for HAR [25.606795179822885]
We propose CODA, a COst-efficient Domain Adaptation mechanism for mobile sensing.
CODA addresses real-time drifts from the data distribution perspective with active learning theory.
We demonstrate the feasibility and potential of online adaptation with CODA.
arXiv Detail & Related papers (2024-03-22T02:50:42Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
We introduce Federated Learning (FL) to collaboratively train a decentralized shared model of Intrusion Detection Systems (IDS)
FLEKD enables a more flexible aggregation method than conventional model fusion techniques.
Experiment results show that the proposed approach outperforms local training and traditional FL in terms of both speed and performance.
arXiv Detail & Related papers (2024-01-22T14:16:37Z) - Analysis and Optimization of Wireless Federated Learning with Data
Heterogeneity [72.85248553787538]
This paper focuses on performance analysis and optimization for wireless FL, considering data heterogeneity, combined with wireless resource allocation.
We formulate the loss function minimization problem, under constraints on long-term energy consumption and latency, and jointly optimize client scheduling, resource allocation, and the number of local training epochs (CRE)
Experiments on real-world datasets demonstrate that the proposed algorithm outperforms other benchmarks in terms of the learning accuracy and energy consumption.
arXiv Detail & Related papers (2023-08-04T04:18:01Z) - SECOE: Alleviating Sensors Failure in Machine Learning-Coupled IoT
Systems [0.0]
This paper proposes SECOE, a proactive approach for alleviating potentially simultaneous sensor failures.
SECOE includes a novel technique to minimize the number of models in the ensemble by harnessing the correlations among sensors.
Experiments reveal that SECOE effectively preserves prediction accuracy in the presence of sensor failures.
arXiv Detail & Related papers (2022-10-05T10:58:39Z) - Online Data Selection for Federated Learning with Limited Storage [53.46789303416799]
Federated Learning (FL) has been proposed to achieve distributed machine learning among networked devices.
The impact of on-device storage on the performance of FL is still not explored.
In this work, we take the first step to consider the online data selection for FL with limited on-device storage.
arXiv Detail & Related papers (2022-09-01T03:27:33Z) - Federated Learning with Correlated Data: Taming the Tail for Age-Optimal
Industrial IoT [55.62157530259969]
We study a sensor's transmit power minimization subject to the peak-AoI requirement and a probabilistic constraint on queuing latency.
We propose a local-model selection approach which accounts for correlation among the sensor's training data.
Numerical results show the tradeoff between the transmit power, peak AoI, and delay's tail distribution.
arXiv Detail & Related papers (2021-08-17T08:38:31Z) - Feeling of Presence Maximization: mmWave-Enabled Virtual Reality Meets
Deep Reinforcement Learning [76.46530937296066]
This paper investigates the problem of providing ultra-reliable and energy-efficient virtual reality (VR) experiences for wireless mobile users.
To ensure reliable ultra-high-definition (UHD) video frame delivery to mobile users, a coordinated multipoint (CoMP) transmission technique and millimeter wave (mmWave) communications are exploited.
arXiv Detail & Related papers (2021-06-03T08:35:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.