論文の概要: EmoBipedNav: Emotion-aware Social Navigation for Bipedal Robots with Deep Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2503.12538v1
- Date: Sun, 16 Mar 2025 15:11:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-18 12:28:03.478212
- Title: EmoBipedNav: Emotion-aware Social Navigation for Bipedal Robots with Deep Reinforcement Learning
- Title(参考訳): EmoBipedNav:深層強化学習による二足歩行ロボットの感情認識型ソーシャルナビゲーション
- Authors: Wei Zhu, Abirath Raju, Abdulaziz Shamsah, Anqi Wu, Seth Hutchinson, Ye Zhao,
- Abstract要約: 本研究では、社会的に対話的な環境を歩行する二足歩行ロボットのための感情認識ナビゲーションフレームワーク、BipedNavを提案する。
提案フレームワークは、トレーニング中の全順序ダイナミクスとロコモーション制約を組み込んだもので、ロコモーションコントローラのエラーや制限のトラッキングを効果的に行う。
- 参考スコア(独自算出の注目度): 11.622119393400341
- License:
- Abstract: This study presents an emotion-aware navigation framework -- EmoBipedNav -- using deep reinforcement learning (DRL) for bipedal robots walking in socially interactive environments. The inherent locomotion constraints of bipedal robots challenge their safe maneuvering capabilities in dynamic environments. When combined with the intricacies of social environments, including pedestrian interactions and social cues, such as emotions, these challenges become even more pronounced. To address these coupled problems, we propose a two-stage pipeline that considers both bipedal locomotion constraints and complex social environments. Specifically, social navigation scenarios are represented using sequential LiDAR grid maps (LGMs), from which we extract latent features, including collision regions, emotion-related discomfort zones, social interactions, and the spatio-temporal dynamics of evolving environments. The extracted features are directly mapped to the actions of reduced-order models (ROMs) through a DRL architecture. Furthermore, the proposed framework incorporates full-order dynamics and locomotion constraints during training, effectively accounting for tracking errors and restrictions of the locomotion controller while planning the trajectory with ROMs. Comprehensive experiments demonstrate that our approach exceeds both model-based planners and DRL-based baselines. The hardware videos and open-source code are available at https://gatech-lidar.github.io/emobipednav.github.io/.
- Abstract(参考訳): 本研究では、社会的にインタラクティブな環境を歩行する二足歩行ロボットの深部強化学習(DRL)を用いた感情認識ナビゲーションフレームワークであるEmoBipedNavを提案する。
二足歩行ロボットの本来の移動制限は、動的環境における安全な操作能力に挑戦する。
歩行者との交流や感情などの社会的手がかりを含む社会的環境の複雑さと組み合わせると、これらの課題はさらに顕著になる。
両足歩行制約と複雑な社会環境を考慮した2段階パイプラインを提案する。
具体的には, 衝突領域, 感情関連不快ゾーン, 社会的相互作用, 進化する環境の時空間的ダイナミクスなど, 潜時的特徴を抽出するLDARグリッドマップ (Sequence LiDAR grid map) を用いて, 社会的ナビゲーションシナリオを表現している。
抽出された特徴は、DRLアーキテクチャを通して、リダクションオーダーモデル(ROM)のアクションに直接マッピングされる。
さらに,本提案フレームワークは,トレーニング中の全順序ダイナミクスと移動制限を取り入れ,ROMを用いて軌道を計画しながら,移動制御器の誤差や制限の追跡を効果的に行う。
総合実験により,本手法がモデルベースプランナーとDRLベースベースラインを超越していることが実証された。
ハードウェアビデオとオープンソースコードはhttps://gatech-lidar.github.io/emobipednav.github.io/で公開されている。
関連論文リスト
- An Open-source Sim2Real Approach for Sensor-independent Robot Navigation in a Grid [0.0]
シミュレーション環境で訓練されたエージェントと、同様の環境でロボットをナビゲートする実際の実装とのギャップを橋渡しする。
具体的には、Gymnasium Frozen Lakeにインスパイアされた現実世界のグリッドのような環境で四足歩行ロボットをナビゲートすることに焦点を当てる。
論文 参考訳(メタデータ) (2024-11-05T20:18:29Z) - Hyp2Nav: Hyperbolic Planning and Curiosity for Crowd Navigation [58.574464340559466]
我々は,群集ナビゲーションを実現するための双曲学習を提唱し,Hyp2Navを紹介した。
Hyp2Navは双曲幾何学の本質的な性質を活用し、ナビゲーションタスクにおける意思決定プロセスの階層的性質をよりよく符号化する。
本稿では, 効果的なソーシャルナビゲーション, 最高の成功率, 複数シミュレーション設定におけるリターンをもたらす, 双曲型ポリシーモデルと双曲型好奇性モジュールを提案する。
論文 参考訳(メタデータ) (2024-07-18T14:40:33Z) - Structured Graph Network for Constrained Robot Crowd Navigation with Low Fidelity Simulation [10.201765067255147]
低忠実度シミュレータを用いた群集ナビゲーションにおける強化学習(RL)ポリシーの適用可能性について検討した。
動的環境の表現を導入し,人間と障害物の表現を分離する。
この表現は、低忠実度シミュレーターで訓練されたRLポリシーを、シム2リアルギャップを減らして現実世界に展開することを可能にする。
論文 参考訳(メタデータ) (2024-05-27T04:53:09Z) - Learning Robust Autonomous Navigation and Locomotion for Wheeled-Legged Robots [50.02055068660255]
都市環境のナビゲーションは、ロボットにとってユニークな課題であり、移動とナビゲーションのための革新的なソリューションを必要としている。
本研究は, 適応移動制御, 移動対応ローカルナビゲーション計画, 市内の大規模経路計画を含む, 完全に統合されたシステムを導入する。
モデルフリー強化学習(RL)技術と特権学習を用いて,多目的移動制御系を開発した。
私たちのコントローラーは大規模な都市航法システムに統合され、スイスのチューリッヒとスペインのセビリアで自律的、キロメートル規模の航法ミッションによって検証されます。
論文 参考訳(メタデータ) (2024-05-03T00:29:20Z) - ETPNav: Evolving Topological Planning for Vision-Language Navigation in
Continuous Environments [56.194988818341976]
視覚言語ナビゲーションは、エージェントが環境中をナビゲートするための指示に従う必要があるタスクである。
本研究では,1)環境を抽象化し,長距離航法計画を生成する能力,2)連続環境における障害物回避制御能力の2つの重要なスキルに焦点を当てたETPNavを提案する。
ETPNavは、R2R-CEとRxR-CEデータセットの先行技術よりも10%以上、20%改善されている。
論文 参考訳(メタデータ) (2023-04-06T13:07:17Z) - SOCIALGYM 2.0: Simulator for Multi-Agent Social Robot Navigation in
Shared Human Spaces [13.116180950665962]
SocialGym 2はソーシャルロボットのためのマルチエージェントナビゲーションシミュレータである。
ドアウェイ、廊下、交差点、ラウンドアバウトなど、複雑な環境で現実世界のダイナミクスを再現する。
SocialGym 2は、ROSメッセージングを通じてナビゲーションスタックと統合されたアクセス可能なpythonインターフェースを提供する。
論文 参考訳(メタデータ) (2023-03-09T21:21:05Z) - Learning to Walk by Steering: Perceptive Quadrupedal Locomotion in
Dynamic Environments [25.366480092589022]
四足歩行ロボットは、環境の乱雑さや移動する障害物に応答して、頑丈で機敏な歩行行動を示す必要がある。
本稿では,知覚的移動の問題をハイレベルな意思決定に分解する,PreLUDEという階層型学習フレームワークを提案する。
シミュレーションおよびハードウェア実験において,本手法の有効性を実証する。
論文 参考訳(メタデータ) (2022-09-19T17:55:07Z) - Socially Compliant Navigation Dataset (SCAND): A Large-Scale Dataset of
Demonstrations for Social Navigation [92.66286342108934]
社会ナビゲーションは、ロボットのような自律的なエージェントが、人間のような他の知的エージェントの存在下で、社会的に従順な方法でナビゲートする能力である。
私たちのデータセットには8.7時間、128の軌道、25マイルの社会的に適合した人間の遠隔運転デモが含まれています。
論文 参考訳(メタデータ) (2022-03-28T19:09:11Z) - COCOI: Contact-aware Online Context Inference for Generalizable
Non-planar Pushing [87.7257446869134]
一般的なコンタクトリッチな操作問題は、ロボット工学における長年の課題である。
深層強化学習は、ロボット操作タスクの解決に大きな可能性を示している。
動的プロパティのコンテキスト埋め込みをオンラインにエンコードする深層RL法であるCOCOIを提案する。
論文 参考訳(メタデータ) (2020-11-23T08:20:21Z) - Learning Quadrupedal Locomotion over Challenging Terrain [68.51539602703662]
足の移動はロボティクスの操作領域を劇的に拡張することができる。
足の移動のための従来のコントローラーは、運動プリミティブと反射の実行を明示的にトリガーする精巧な状態マシンに基づいている。
ここでは、自然環境に挑戦する際の足の移動に対して、徹底的に頑健な制御器を提案する。
論文 参考訳(メタデータ) (2020-10-21T19:11:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。