論文の概要: Adaptive Deep Learning for Multiclass Breast Cancer Classification via Misprediction Risk Analysis
- arxiv url: http://arxiv.org/abs/2503.12778v1
- Date: Mon, 17 Mar 2025 03:25:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-18 12:35:06.087826
- Title: Adaptive Deep Learning for Multiclass Breast Cancer Classification via Misprediction Risk Analysis
- Title(参考訳): ミスプレディションリスク分析を用いた多クラス乳癌分類のための適応的深層学習
- Authors: Gul Sheeraz, Qun Chen, Liu Feiyu, Zhou Fengjin MD,
- Abstract要約: 早期発見は患者の予後を改善するのに不可欠である。
コンピュータ支援診断アプローチは乳がんの検出を著しく向上させた。
しかし、これらの手法は多クラス分類の課題に直面し、しばしば誤予測を引き起こす。
- 参考スコア(独自算出の注目度): 0.8028869343053783
- License:
- Abstract: Breast cancer remains one of the leading causes of cancer-related deaths worldwide. Early detection is crucial for improving patient outcomes, yet the diagnostic process is often complex and prone to inconsistencies among pathologists. Computer-aided diagnostic approaches have significantly enhanced breast cancer detection, particularly in binary classification (benign vs. malignant). However, these methods face challenges in multiclass classification, leading to frequent mispredictions. In this work, we propose a novel adaptive learning approach for multiclass breast cancer classification using H&E-stained histopathology images. First, we introduce a misprediction risk analysis framework that quantifies and ranks the likelihood of an image being mislabeled by a classifier. This framework leverages an interpretable risk model that requires only a small number of labeled samples for training. Next, we present an adaptive learning strategy that fine-tunes classifiers based on the specific characteristics of a given dataset. This approach minimizes misprediction risk, allowing the classifier to adapt effectively to the target workload. We evaluate our proposed solutions on real benchmark datasets, demonstrating that our risk analysis framework more accurately identifies mispredictions compared to existing methods. Furthermore, our adaptive learning approach significantly improves the performance of state-of-the-art deep neural network classifiers.
- Abstract(参考訳): 乳がんは、世界中のがん関連死亡の主な原因の1つだ。
早期発見は患者の予後を改善するために重要であるが、診断過程は複雑であり、病理学者の間では矛盾が生じることが多い。
コンピュータ支援による診断アプローチは、特に二分分類(良性対悪性)において、乳がんの検出を著しく向上させた。
しかし、これらの手法は多クラス分類の課題に直面し、しばしば誤予測を引き起こす。
本研究では,H&E染色組織像を用いた多クラス乳癌分類のための適応型学習手法を提案する。
まず,分類器によって誤ってラベル付けされた画像の可能性を定量化し,ランク付けする誤予測リスク分析フレームワークを提案する。
このフレームワークは、少数のラベル付きサンプルしか必要としない、解釈可能なリスクモデルを活用する。
次に、与えられたデータセットの特質に基づいて微調整を施す適応学習戦略を提案する。
このアプローチは誤予測のリスクを最小限に抑え、分類器がターゲットのワークロードに効果的に適応できるようにする。
提案手法を実際のベンチマークデータセット上で評価し,既存の手法と比較して,リスク分析フレームワークが誤予測をより正確に識別できることを実証した。
さらに、適応学習アプローチは最先端のディープニューラルネットワーク分類器の性能を大幅に向上させる。
関連論文リスト
- Mitigating annotation shift in cancer classification using single image generative models [1.1864334278373239]
本研究は乳房マンモグラフィー領域における癌分類におけるアノテーションシフトをシミュレートし,解析し,緩和する。
本研究では, 影響のあるクラスに対して, 単一画像生成モデルに基づくトレーニングデータ拡張手法を提案する。
本研究は、深層学習乳癌分類におけるアノテーションシフトに関する重要な知見を提供し、ドメインシフトの課題を克服するための単一画像生成モデルの可能性を探る。
論文 参考訳(メタデータ) (2024-05-30T07:02:50Z) - Multi-task Explainable Skin Lesion Classification [54.76511683427566]
少ないラベル付きデータでよく一般化する皮膚病変に対する数発のショットベースアプローチを提案する。
提案手法は,アテンションモジュールや分類ネットワークとして機能するセグメンテーションネットワークの融合を含む。
論文 参考訳(メタデータ) (2023-10-11T05:49:47Z) - Pre-screening breast cancer with machine learning and deep learning [0.0]
深層学習は、患者の人口統計学的および人文学的情報を分析することにより、がんの事前スクリーニングに使用できる。
特徴選択を用いて微調整された入力層アーキテクチャを用いたディープラーニングモデルは、がん患者と非がん患者を効果的に区別することができる。
これらの結果から, 癌前スクリーニングに応用されたディープラーニングアルゴリズムは, 放射線のない, 非侵襲的で手頃な価格で, 画像に基づくスクリーニング法を補完するものであることが示唆された。
論文 参考訳(メタデータ) (2023-02-05T15:27:50Z) - Gene selection from microarray expression data: A Multi-objective PSO
with adaptive K-nearest neighborhood [0.0]
本稿では,遺伝子発現データを用いたヒト癌疾患の分類問題について論じる。
マイクロアレイデータセットを解析し,がん疾患を効果的に分類するための新しい手法を提案する。
論文 参考訳(メタデータ) (2022-05-27T04:22:10Z) - Multi-class versus One-class classifier in spontaneous speech analysis
oriented to Alzheimer Disease diagnosis [58.720142291102135]
本研究の目的は,音声信号から抽出した新しいバイオマーカーを用いて自動解析を行うことにより,ADの早期診断と重症度評価の改善に寄与することである。
外付け器とフラクタル次元の機能に関する情報を使用することで、システムの性能が向上する。
論文 参考訳(メタデータ) (2022-03-21T09:57:20Z) - Oral cancer detection and interpretation: Deep multiple instance
learning versus conventional deep single instance learning [2.2612425542955292]
口腔癌(OC)診断の現在の医療基準は、口腔から採取した組織標本の組織学的検査である。
このアプローチを臨床ルーチンに導入するには、専門家の欠如や労働集約的な作業といった課題が伴う。
私たちは、患者1人あたりのラベルだけで癌を確実に検出できるAIベースの方法に興味を持っています。
論文 参考訳(メタデータ) (2022-02-03T15:04:26Z) - Open-Set Recognition of Breast Cancer Treatments [91.3247063132127]
オープンセット認識は、テストサンプルをトレーニングや"未知"から既知のクラスの1つに分類することで、分類タスクを一般化する
乳がん患者データに対して,画像データセットの最先端結果を実現するガウス混合変分オートエンコーダモデルを適用した。
より正確でロバストな分類結果が得られ,F1の平均値が24.5%上昇したばかりでなく,臨床環境への展開性の観点からも,オープンセット認識の再検討を行った。
論文 参考訳(メタデータ) (2022-01-09T04:35:55Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
ヘマトキシリンとエオシン(H&E)で染色した組織学的肺スライドにおける癌病変の自動検出のためのグラフベーススパース成分分析(GS-PCA)ネットワークを提案する。
我々は,SVM K-rasG12D肺がんモデルから得られたH&Eスライダーの精度・リコール率,Fスコア,谷本係数,レシーバ演算子特性(ROC)の曲線下領域を用いて,提案アルゴリズムの性能評価を行った。
論文 参考訳(メタデータ) (2021-10-27T19:28:36Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
本研究は, 類似患者のサブグループを同定し, 数発の疾患のサブタイプ予測問題に焦点を当てた。
新しいモデルを開発するためにメタラーニング技術を導入し、関連する臨床課題から共通の経験や知識を抽出する。
我々の新しいモデルは、単純だが効果的なメタ学習マシンであるPrototypeal Networkと呼ばれる、慎重に設計されたメタラーナーに基づいて構築されている。
論文 参考訳(メタデータ) (2020-09-02T02:50:30Z) - Semi-supervised Medical Image Classification with Relation-driven
Self-ensembling Model [71.80319052891817]
医用画像分類のための関係駆動型半教師付きフレームワークを提案する。
これは、摂動下で与えられた入力の予測一貫性を促進することでラベルのないデータを利用する。
本手法は,シングルラベルおよびマルチラベル画像分類のシナリオにおいて,最先端の半教師付き学習手法よりも優れる。
論文 参考訳(メタデータ) (2020-05-15T06:57:54Z) - Learning from Suspected Target: Bootstrapping Performance for Breast
Cancer Detection in Mammography [6.323318523772466]
対象領域の選択と訓練を行う新しいサンプリング手順とともに,新しいトップ可能性損失を導入する。
まず,提案手法をプライベートな高密度マンモグラフィーデータセット上で検証する。
以上の結果から,本手法は偽陽性率を大幅に低減し,質量型癌検出では0.25倍の特異性を示した。
論文 参考訳(メタデータ) (2020-03-01T09:04:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。