Detecting Morphing Attacks via Continual Incremental Training
- URL: http://arxiv.org/abs/2307.15105v1
- Date: Thu, 27 Jul 2023 17:48:29 GMT
- Title: Detecting Morphing Attacks via Continual Incremental Training
- Authors: Lorenzo Pellegrini, Guido Borghi, Annalisa Franco, Davide Maltoni
- Abstract summary: Recent Continual Learning (CL) paradigm may represent an effective solution to enable incremental training, even through multiple sites.
We investigate the performance of different Continual Learning methods in this scenario, simulating a learning model that is updated every time a new chunk of data, even of variable size, is available.
Experimental results reveal that a particular CL method, namely Learning without Forgetting (LwF), is one of the best-performing algorithms.
- Score: 10.796380524798744
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Scenarios in which restrictions in data transfer and storage limit the
possibility to compose a single dataset -- also exploiting different data
sources -- to perform a batch-based training procedure, make the development of
robust models particularly challenging. We hypothesize that the recent
Continual Learning (CL) paradigm may represent an effective solution to enable
incremental training, even through multiple sites. Indeed, a basic assumption
of CL is that once a model has been trained, old data can no longer be used in
successive training iterations and in principle can be deleted. Therefore, in
this paper, we investigate the performance of different Continual Learning
methods in this scenario, simulating a learning model that is updated every
time a new chunk of data, even of variable size, is available. Experimental
results reveal that a particular CL method, namely Learning without Forgetting
(LwF), is one of the best-performing algorithms. Then, we investigate its usage
and parametrization in Morphing Attack Detection and Object Classification
tasks, specifically with respect to the amount of new training data that became
available.
Related papers
- Data Shapley in One Training Run [88.59484417202454]
Data Shapley provides a principled framework for attributing data's contribution within machine learning contexts.
Existing approaches require re-training models on different data subsets, which is computationally intensive.
This paper introduces In-Run Data Shapley, which addresses these limitations by offering scalable data attribution for a target model of interest.
arXiv Detail & Related papers (2024-06-16T17:09:24Z) - Federated Continual Learning Goes Online: Uncertainty-Aware Memory Management for Vision Tasks and Beyond [13.867793835583463]
We propose an uncertainty-aware memory-based approach to solve catastrophic forgetting.
We retrieve samples with specific characteristics, and - by retraining the model on such samples - we demonstrate the potential of this approach.
arXiv Detail & Related papers (2024-05-29T09:29:39Z) - Distilled Datamodel with Reverse Gradient Matching [74.75248610868685]
We introduce an efficient framework for assessing data impact, comprising offline training and online evaluation stages.
Our proposed method achieves comparable model behavior evaluation while significantly speeding up the process compared to the direct retraining method.
arXiv Detail & Related papers (2024-04-22T09:16:14Z) - Learn to Unlearn for Deep Neural Networks: Minimizing Unlearning
Interference with Gradient Projection [56.292071534857946]
Recent data-privacy laws have sparked interest in machine unlearning.
Challenge is to discard information about the forget'' data without altering knowledge about remaining dataset.
We adopt a projected-gradient based learning method, named as Projected-Gradient Unlearning (PGU)
We provide empirically evidence to demonstrate that our unlearning method can produce models that behave similar to models retrained from scratch across various metrics even when the training dataset is no longer accessible.
arXiv Detail & Related papers (2023-12-07T07:17:24Z) - Prior-Free Continual Learning with Unlabeled Data in the Wild [24.14279172551939]
We propose a Prior-Free Continual Learning (PFCL) method to incrementally update a trained model on new tasks.
PFCL learns new tasks without knowing the task identity or any previous data.
Our experiments show that our PFCL method significantly mitigates forgetting in all three learning scenarios.
arXiv Detail & Related papers (2023-10-16T13:59:56Z) - PILOT: A Pre-Trained Model-Based Continual Learning Toolbox [71.63186089279218]
This paper introduces a pre-trained model-based continual learning toolbox known as PILOT.
On the one hand, PILOT implements some state-of-the-art class-incremental learning algorithms based on pre-trained models, such as L2P, DualPrompt, and CODA-Prompt.
On the other hand, PILOT fits typical class-incremental learning algorithms within the context of pre-trained models to evaluate their effectiveness.
arXiv Detail & Related papers (2023-09-13T17:55:11Z) - Complementary Learning Subnetworks for Parameter-Efficient
Class-Incremental Learning [40.13416912075668]
We propose a rehearsal-free CIL approach that learns continually via the synergy between two Complementary Learning Subnetworks.
Our method achieves competitive results against state-of-the-art methods, especially in accuracy gain, memory cost, training efficiency, and task-order.
arXiv Detail & Related papers (2023-06-21T01:43:25Z) - Architecture, Dataset and Model-Scale Agnostic Data-free Meta-Learning [119.70303730341938]
We propose ePisode cUrriculum inveRsion (ECI) during data-free meta training and invErsion calibRation following inner loop (ICFIL) during meta testing.
ECI adaptively increases the difficulty level of pseudo episodes according to the real-time feedback of the meta model.
We formulate the optimization process of meta training with ECI as an adversarial form in an end-to-end manner.
arXiv Detail & Related papers (2023-03-20T15:10:41Z) - Learning an evolved mixture model for task-free continual learning [11.540150938141034]
We address the Task-Free Continual Learning (TFCL) in which a model is trained on non-stationary data streams with no explicit task information.
We introduce two simple dropout mechanisms to selectively remove stored examples in order to avoid memory overload.
arXiv Detail & Related papers (2022-07-11T16:01:27Z) - Active Learning for Sequence Tagging with Deep Pre-trained Models and
Bayesian Uncertainty Estimates [52.164757178369804]
Recent advances in transfer learning for natural language processing in conjunction with active learning open the possibility to significantly reduce the necessary annotation budget.
We conduct an empirical study of various Bayesian uncertainty estimation methods and Monte Carlo dropout options for deep pre-trained models in the active learning framework.
We also demonstrate that to acquire instances during active learning, a full-size Transformer can be substituted with a distilled version, which yields better computational performance.
arXiv Detail & Related papers (2021-01-20T13:59:25Z) - Training Data Leakage Analysis in Language Models [6.843491191969066]
We introduce a methodology that investigates identifying the user content in the training data that could be leaked under a strong and realistic threat model.
We propose two metrics to quantify user-level data leakage by measuring a model's ability to produce unique sentence fragments within training data.
arXiv Detail & Related papers (2021-01-14T00:57:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.