論文の概要: AR-1-to-3: Single Image to Consistent 3D Object Generation via Next-View Prediction
- arxiv url: http://arxiv.org/abs/2503.12929v1
- Date: Mon, 17 Mar 2025 08:39:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-18 12:30:32.859555
- Title: AR-1-to-3: Single Image to Consistent 3D Object Generation via Next-View Prediction
- Title(参考訳): AR-1-to-3:Next-View予測による連続した3次元オブジェクト生成のための単一画像
- Authors: Xuying Zhang, Yupeng Zhou, Kai Wang, Yikai Wang, Zhen Li, Xiuli Shao, Daquan Zhou, Qibin Hou, Ming-Ming Cheng,
- Abstract要約: 拡散モデルに基づく新しい次世代予測パラダイムAR-1-to-3を提案する。
提案手法は,生成したビューと入力ビューとの整合性を大幅に改善し,高忠実度3Dアセットを生成する。
- 参考スコア(独自算出の注目度): 71.25875227288837
- License:
- Abstract: Novel view synthesis (NVS) is a cornerstone for image-to-3d creation. However, existing works still struggle to maintain consistency between the generated views and the input views, especially when there is a significant camera pose difference, leading to poor-quality 3D geometries and textures. We attribute this issue to their treatment of all target views with equal priority according to our empirical observation that the target views closer to the input views exhibit higher fidelity. With this inspiration, we propose AR-1-to-3, a novel next-view prediction paradigm based on diffusion models that first generates views close to the input views, which are then utilized as contextual information to progressively synthesize farther views. To encode the generated view subsequences as local and global conditions for the next-view prediction, we accordingly develop a stacked local feature encoding strategy (Stacked-LE) and an LSTM-based global feature encoding strategy (LSTM-GE). Extensive experiments demonstrate that our method significantly improves the consistency between the generated views and the input views, producing high-fidelity 3D assets.
- Abstract(参考訳): 新たなビュー合成(NVS)は、画像から3dへの生成の基盤となる。
しかし、既存の作品は、生成したビューと入力ビューの一貫性を維持するのに依然として苦労している。
この問題は、入力ビューに近いターゲットビューの方が忠実度が高いという経験的観察に基づいて、同じ優先度で全てのターゲットビューを処理したことが原因である。
このインスピレーションにより、まず入力ビューに近いビューを生成する拡散モデルに基づく新しい次世代予測パラダイムAR-1-to-3を提案する。
生成したビューサブシーケンスを,次のビュー予測のためのローカルおよびグローバルな条件としてエンコードするために,スタック化されたローカル特徴符号化戦略(Stacked-LE)とLSTMに基づくグローバル特徴符号化戦略(LSTM-GE)を開発する。
大規模な実験により,提案手法は生成したビューと入力ビューとの整合性を著しく改善し,高忠実度3Dアセットを創出することを示した。
関連論文リスト
- SeMv-3D: Towards Semantic and Mutil-view Consistency simultaneously for General Text-to-3D Generation with Triplane Priors [115.66850201977887]
汎用テキストから3d生成のための新しいフレームワークであるSeMv-3Dを提案する。
3次元の空間的特徴を持つ3次元平面先行学習を学習し、3次元の異なる視点間の整合性を維持する三次元平面先行学習器を提案する。
また,3次元空間特徴とテキスト・セマンティクスとの整合性を保持するセマンティック・アラインメント・ビュー・シンセサイザーを設計する。
論文 参考訳(メタデータ) (2024-10-10T07:02:06Z) - UpFusion: Novel View Diffusion from Unposed Sparse View Observations [66.36092764694502]
UpFusionは、参照画像のスパースセットが与えられたオブジェクトに対して、新しいビュー合成と3D表現を推論することができる。
本研究では,この機構により,付加された(未提示)画像の合成品質を向上しつつ,高忠実度な新規ビューを生成することができることを示す。
論文 参考訳(メタデータ) (2023-12-11T18:59:55Z) - Consistent123: Improve Consistency for One Image to 3D Object Synthesis [74.1094516222327]
大規模な画像拡散モデルは、高品質で優れたゼロショット機能を備えた新規なビュー合成を可能にする。
これらのモデルは、ビュー一貫性の保証がなく、3D再構成や画像から3D生成といった下流タスクのパフォーマンスが制限される。
本稿では,新しい視点を同時に合成するConsistent123を提案する。
論文 参考訳(メタデータ) (2023-10-12T07:38:28Z) - Consistent-1-to-3: Consistent Image to 3D View Synthesis via Geometry-aware Diffusion Models [16.326276673056334]
Consistent-1-to-3は、この問題を著しく緩和する生成フレームワークである。
我々はNVSタスクを,(i)観察された領域を新しい視点に変換する,(ii)見えない領域を幻覚させる,の2つの段階に分解する。
本稿では,幾何制約を取り入れ,多視点情報をよりよく集約するための多視点アテンションとして,エピポラ誘導型アテンションを用いることを提案する。
論文 参考訳(メタデータ) (2023-10-04T17:58:57Z) - High-fidelity 3D GAN Inversion by Pseudo-multi-view Optimization [51.878078860524795]
フォトリアリスティック・ノベルビューを合成可能な高忠実度3次元生成対向ネットワーク(GAN)インバージョン・フレームワークを提案する。
提案手法は,1枚の画像から高忠実度3Dレンダリングを可能にし,AI生成3Dコンテンツの様々な応用に期待できる。
論文 参考訳(メタデータ) (2022-11-28T18:59:52Z) - Vision Transformer for NeRF-Based View Synthesis from a Single Input
Image [49.956005709863355]
本稿では,グローバルな特徴と局所的な特徴を両立させ,表現力のある3D表現を実現することを提案する。
新たなビューを合成するために,学習した3次元表現に条件付き多層パーセプトロン(MLP)ネットワークを訓練し,ボリュームレンダリングを行う。
提案手法は,1つの入力画像のみから新しいビューを描画し,複数のオブジェクトカテゴリを1つのモデルで一般化することができる。
論文 参考訳(メタデータ) (2022-07-12T17:52:04Z) - AUTO3D: Novel view synthesis through unsupervisely learned variational
viewpoint and global 3D representation [27.163052958878776]
本稿では,ポーズ・インスペクションを伴わない単一の2次元画像から学習に基づく新規ビュー・シンセサイザーを目標とする。
本研究では,学習済みの相対的目的/回転と暗黙的グローバルな3次元表現を両立させるために,エンドツーエンドの訓練可能な条件変分フレームワークを構築した。
本システムでは,3次元再構成を明示的に行うことなく,暗黙的に3次元理解を行うことができる。
論文 参考訳(メタデータ) (2020-07-13T18:51:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。